作者丨文永亮
学校丨哈尔滨工业大学(深圳)硕士生
研究方向丨目标检测、GAN
引言
最近笔者也在寻找目标检测的其他方向,一般可以继续挖掘的方向是从目标检测的数据入手,困难样本的目标检测,如检测物体被遮挡,极小人脸检测,亦或者
数据样本不足的算法。
这里笔者介绍一篇
小样本(few-shot)数据方向下的
域适应(Domain Adaptation)的目标检测算法,这篇新加坡国立大学 & 华为诺亚方舟实验室的论文
Few-shot Adaptive Faster R-CNN
被收录于
CVPR 2019,解决的具体问题场景是在普通常见场景下的汽车目标检测。
我们只有少量雾天暴雨极劣天气环境下的汽车样本,那么我们可以使用成对采样(pairing-sampling)的方法,源域(source domain)即普通场景下的汽车样本 Cars 和目标域(target domain)即
恶劣天气下的汽车样本
成对(
,
)组成负样本 ,另一方面 源域下成对组成正样本,使用 GAN 的结构,判别器(discriminator)尽可能去分辨正负样本的不同,也就是
分辨出源域和目标域的样本 ,生成器(generator)是尝试去迷惑判别器。 这就是这个算法的主要思想,主要是把域适应的思想应用到了目标检 测上。



论文源码还没完全开源,只找到了个官方的 repo:
https://github.com/twangnh/FAFRCNN
思考
在介绍文章具体网络设计和损失函数的设计之前,我们可以带着一个问题去思考。
用 GAN 的结构,数据样本使用作为正样本、