CnGAN:面向跨网用户偏好推荐的生成对抗网络

本文介绍了CnGAN,一种基于GAN的推荐系统,旨在为非重叠用户提供跨网络的个性化推荐。CnGAN通过学习目标网络到源网络的映射,生成非重叠用户的源网络偏好,提高了推荐的准确性、新颖性和多样性。实验表明,CnGAN在推荐性能上优于现有方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


©PaperWeekly 原创 · 作者|孙裕道

学校|北京邮电大学博士生

研究方向|GAN图像生成、情绪对抗样本生成

论文标题:CnGAN: Generative Adversarial Networks for Cross-network User Preference Generation for Non-overlapped Users

论文链接:https://arxiv.org/abs/2008.10845

引言

对于推荐系统大家早已见怪不怪了,购物平台上有淘宝,京东,拼多多,音乐平台上有 QQ 音乐和网易音乐,视频平台上有优酷和爱奇艺。它们共同的特点就是根据自己的喜好和浏览记录进行个性化的推荐。

但是还有一种推荐方式就是跨平台跨网络的推荐方式,比如说,你喜欢看《泰坦尼克号》这部电影,音乐平台得知这个消息就会给你推荐《My heart will go on》这首歌曲。

但是跨平台跨网络推荐的一个主要缺点是它们只能应用于重叠的用户(通俗易懂的理解是在不同的平台和网络中你有不同的 ID 和昵称,但这些 ID 和昵称都是特指你这个人)。因此,构成大多数用户的非重叠用户被忽略。

本文作者针对这个问题提出了一种新的基于多任务学习的编码器 GAN 推荐体系结构——CnGAN,作者在 Twitter 源网络上生成用户首选项,在 YouTube 目标网络上生成推荐。实验结果表明,生成的偏好可以用来改善非重叠用户的推荐。CnGAN 在准确性、新颖性和多样性方面,与最先进的跨平台跨网络推荐解决方案相比,所得到的推荐具有更高的性能。

本文涉及到大量的数学符号和公式,并且算法模型图也不是一目了然,所以我会对本文进行详细的解读。

论文的贡献

本文的贡献可以归结如下三点:

  • 该论文是第一次尝试应用基于 GAN 的模型为非重叠用户生成缺失源网络偏好进行推荐,具有一定的开创性。

  • 作者提出了一种新的基于 GAN 的模型 CnGAN,该模型包括一个新的内容损失函数和基于用户的成对损失函数,用于生成和推荐任务。

  • 大量的实验表明,CnGAN 对非重叠用户进行推荐的有效性,并与现有的方法相比提高了推荐的整体质量。

模型介绍

3.1 核心思想

在本文中作者提出了跨网络跨平台的推荐体系 CnGAN,该模型通过学习目标网络偏好流形到源网络偏好流形的映射,综合生成非重叠用户的源网络用户偏好。所得到的用户偏好在一个推荐体系结构中使用。作者还提出了一种新的基于用户的两两损失函数,利用隐式交互来更好地指导多任务学习环境下的推荐生成过程。

3.2 预备知识

贝叶斯个性化排名(BPR)是一种基于隐式反馈的项目排序的通用优化准则,它采用成对的实例进行训练具体为:

其中 是所有项的集合, 是用户 已交互的项集,待优化的目标函数为:

其中 是模型的参数, 是激活函数, 是正则化参数。

连续空间特征捕捉:在该论文中作者利用每个用户在每个时间间隔内的目标网络交互及其对应的源网络交互来训练 CnGAN。由于 CnGAN 是一个基于 GAN 的模型,需要在连续的空间中输入信息,所以使用主题建模来捕捉连续主题空间上的用户交互信息。

表示时间   处的重叠用户,其中 表示的是在 时间间隔内目标和源网络交互状态。非重叠用户 仅使用目标网络交互来表示。

作者使用 YouTube 作为目标网络,Twitter 作为源网络,在 YouTube 上进行视频推荐。 是一组交互的视频的集合(比如是自己喜欢或添加到播放列表中的视频), 是推文的集合。

假设每个交互(视频或者推文)都与多个主题相关,并从与每个交互相关的文本数据(视频标题、描述和推文内容)中提取主题,并且使用 TwitterLDA 进行主题建模,因为它对短而嘈杂的内容最有效。

基于主题建模目标网络上的每个用户 被表示为一组主题分发 ,显时间间隔为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值