UniVAE:基于Transformer的单模型、多尺度的VAE模型

本文介绍了UniVAE模型,这是一种结合Transformer的单模型、多尺度的VAE,它沿用了UniLM的思路,通过特定的Attention Mask实现。UniVAE在Transformer中实现了Encoder和Decoder权重共享,具备多尺度特性,可用于文本生成和解耦能力的研究。模型通过调整Attention Mask,以[CLS]向量作为固定大小的编码源,形成多尺度结构,且可通过编辑不同层级的输入变量控制生成结果。此外,UniVAE还可用于构建VQ-VAE。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

©PaperWeekly 原创 · 作者 | 苏剑林

单位 | 追一科技

研究方向 | NLP、神经网络

大家都知道,Transformer 的 复杂度是它的“硬伤”之一。不过凡事有弊亦有利,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值