​ACL 2022 | MetaDistil:基于元学习的模型蒸馏

MetaDistil 是一种新的模型蒸馏方法,利用元学习优化教师模型的知识传授能力和学生模型的知识获取。这种方法让学生模型在教师模型的指导下自我更新,提升学习效果,且在多项基准测试中表现出优于传统蒸馏方法的性能,适用于不同任务和模型的压缩。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

a937dffc5b167692b7ebf8a6a92da1fb.gif

©PaperWeekly 原创 · 作者 | BNDSBilly

研究方向 | 自然语言处理

4da0e123e000f3445e77ef0fc40293fe.png

Abstract

模型蒸馏是当下较为主流的模型压缩方法,通过将大规模教师模型的知识传递给小规模学生模型,从而既能降低模型大小,提升推理速度,又能得到与原模型基本相当的表现。之前分享的几篇论文大多是对蒸馏目标函数及学生模型架构的探究,但本文的作者转而对教师模型的知识传达能力进行了探究。

最终,作者提出了基于 Meta Learning 的 MetaDistil 方法,同时考虑了提升教师模型的知识传达能力和学生模型的知识获取能力。实验表明,MetaDistil 压缩的模型在多个 benchmark 上都优于传统蒸馏方法,同时对学生模型的参数敏感性更低,可以更加灵活的应用在不同的下游任务和模型上。

f5304bc4a7323d47416440cef652931e.png

论文标题:

BERT Learns to Teach: Knowledge Distillation with Meta Learning

论文链接:

https://arxiv.org/abs/2106.04570

代码链接:

https://github.com/JetRunner/MetaDistil

de44dc9f754c8df2b275b8b03fa33e6c.png

Methods

2.1 MetaDistil

在传统模型蒸馏过程中,一般首先训练一个大模型作为教师模型,然后训练一个小的学生模型来模拟教师模型的行为,以便获取教师模型的知识。在整个过程中,教师模型是固定的。但是这一范式有两个缺点:首先,教师模型不知道学生模型的能力。有教育学研究表明,以学生为中心的学习(考虑到学生

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值