
©PaperWeekly 原创 · 作者 | BNDSBilly
研究方向 | 自然语言处理

Background

ICLR 2021 的一篇文章提出了基于 KNN 方法的机器翻译(kNN-MT),可以将 kNN 方法添加到现有的神经机器翻译模型(NMT)上,从而进一步提升推理表现。该方法帮助当时的 SOTA 德语-英语翻译模型提升了 1.5 BLEU 分数,并且还可以适应跨领域及零样本传输。
本次要分享的论文则是针对 kNN-MT 推理速度过慢的不足,提出了蒸馏方法(kNN-KD)。从而在保持 kNN-MT 表现的情况下,将推理速度提升到了与一般 NMT 模型推理速度相当的水平。

论文标题:
Nearest Neighbor Knowledge Distillation for Neural Machine Translation
收录会议:
NAACL 2022
论文链接:
https://arxiv.org/abs/2205.00479

Methods

本文介绍了针对kNN-MT推理速度慢的问题,提出了一种名为kNN-KD的知识蒸馏方法。kNN-KD在保持kNN-MT性能的同时,显著提高了推理速度,使其达到常规神经机器翻译模型的水平。实验结果显示,kNN-KD在多个数据集上超越了其他基线模型,表现出更好的泛化能力。
最低0.47元/天 解锁文章
2252

被折叠的 条评论
为什么被折叠?



