NAACL 2022 | 机器翻译SOTA模型的蒸馏

本文介绍了针对kNN-MT推理速度慢的问题,提出了一种名为kNN-KD的知识蒸馏方法。kNN-KD在保持kNN-MT性能的同时,显著提高了推理速度,使其达到常规神经机器翻译模型的水平。实验结果显示,kNN-KD在多个数据集上超越了其他基线模型,表现出更好的泛化能力。
摘要由CSDN通过智能技术生成

48e2d1a93e0ca529efdc3b290faab59b.gif

©PaperWeekly 原创 · 作者 | BNDSBilly

研究方向 | 自然语言处理

1f069e51b0c9935dac77d1ae0ed628fc.png

Background

cd2e6389eb7eafafea5c1a872b8fcc2b.png

ICLR 2021 的一篇文章提出了基于 KNN 方法的机器翻译(kNN-MT),可以将 kNN 方法添加到现有的神经机器翻译模型(NMT)上,从而进一步提升推理表现。该方法帮助当时的 SOTA 德语-英语翻译模型提升了 1.5 BLEU 分数,并且还可以适应跨领域及零样本传输。

本次要分享的论文则是针对 kNN-MT 推理速度过慢的不足,提出了蒸馏方法(kNN-KD)。从而在保持 kNN-MT 表现的情况下,将推理速度提升到了与一般 NMT 模型推理速度相当的水平。

1d787f14dfb903ad6b11096854013155.png

论文标题:

Nearest Neighbor Knowledge Distillation for Neural Machine Translation

收录会议:

NAACL 2022

论文链接:

https://arxiv.org/abs/2205.00479

ae312cbebee650fea9cf4eeffa598109.png

Methods

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值