Prompt-based Language Models:模版增强语言模型小结

本文探讨了NLP中Prompt技术的应用,从GPT的模版预测到Pattern-Exploiting Training(PET),揭示了Prompt在少样本学习中提升模型效果的作用。通过PET、自动构建Prompt的方法如LPAQA、AUTOPROMPT和LM-BFF,展示了如何利用模版增强模型的性能。此外,还介绍了连续Prompt的P-tuning技术,强调了Prompt在低资源场景下的优势和未来研究方向。
摘要由CSDN通过智能技术生成

©PaperWeekly 原创 · 作者 | 李泺秋

学校 | 浙江大学硕士生

研究方向 | 自然语言处理、知识图谱

最近注意到 NLP 社区中兴起了一阵基于 Prompt(模版)增强模型预测的潮流:

从苏剑林大佬近期的几篇文章《必须要 GPT3 吗?不,BERT 的 MLM 模型也能小样本学习》,《P-tuning:自动构建模版,释放语言模型潜能》,到智源社区在 3 月 20 日举办的《智源悟道 1.0 AI 研究成果发布会 暨大规模预训练模型交流论坛》[1] 中杨植麟大佬关于“预训练与微调新范式”的报告,都指出了 Prompt 在少样本学习等场景下对模型效果的巨大提升作用。

本文根据上述资料以及相关论文,尝试梳理一下 Prompt 这一系列方法的前世今生。

不知道哪里来的图……

本文目录:

  1. 追本溯源:从GPT、MLM到Pattern-Exploiting Training

    1. Pattern-Exploiting Training

  2. 解放双手:自动构建Prompt

    1. LM Prompt And Query Archive

    2. AUTOPROMPT

    3. Better Few-shot Fine-tuning of Language Models

  3. 异想天开:构建连续Prompt

    1. P-tuning

  4. 小结

追本溯源:从GPT、MLM到Pattern-Exploiting Training

要说明 Prompt 是什么,一切还要从 OpenAI 推出的 GPT 模型说起。

GPT 是一系列生成模型,在 2020 年 5 月推出了第三代即 GPT-3。具有 1750 亿参数的它,可以不经微调(当然,几乎没有人可以轻易训练它)而生成各式各样的文本,从常规任务(如对话、摘要)到一些稀奇古怪的场景(生成 UI、SQL 代码?)等等。

在这里,我们关注到 GPT 模型在零样本场景下的运行方式——基于一定的任务描述(task description),按这一描述的指定生成文本:

▲ 嘿,注意:图中的 Prompt 不是本文的 Prompt

仅仅几个单词组成的任务描述,就可以为语言模型的预测提供指导,这启发了一些少样本领域的工作——在缺少训练数据的场景下,利用任务描述能很好地提升模型的效果。

另一个灵感来自预训练语言模型的 Masked Language Model/MLM 任务:

在 BERT 的训练中,有 15% 的输入词被选中,其中的绝大部分又被替换为 [MASK] 标签或者随机的其他词,并在最终的 hidden states 中对被遮盖的词进行预测,通过还原遮盖词让模型学习单词级别的上下文信息。

将这两个灵感融合,就得到了以下将介绍的 Pattern-Exploiting Training,或 PET 方法。

补充:从这里就可以提出一个问题,Mask 和 Prompt,具体而言是哪一部分对模型预测起了作用?


1.1 Pattern-Exploiting Training

PET 来自 2020 年的论文(已发表在 EACL 2021)《Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference》,其中介绍了一种基于模版和词遮盖将文本分类任务转换为完形填空(cloze)任务的半监督训练方法,仅使用 RoBERTa-base 模型就在多个半监督场景下取得了 SOTA:

1. 首先,针对少量样本设计描述的模版(pattern),如下图中对 “Best pizza ever!” 的情感分类任务,生成一个 “It was ___” 的句子并拼接在原始输入后作为补充;

  • 对模版中遮盖的词(即下划线部分),设计候选词对应不同的情感极性(图中 great 对应 positive,bad 对应 negative),然后将模型预测 “great” 的概率作为原来预测 “positive” 的概率,从而情感分类任务转换为完形填空任务

  • 当然,原文中对 NLI 任务也进行了模版构建,其操作有所不同,在此不展开;

  • 注意,完形填空和 MLM 不是一个任务,虽然二者都是词分类任务,但是类别一个是候选词集,一个是模型中全部的词集;

2. 对有标签样本集设计不同的模版,然后对每一个模版,分别训练模型;

  • 因为有标签样本比较少,所以训练成本低于全量数据训练一个完整的模型;

  • 这里的训练因为是有监督的,所以结合了完形填空的词分类 loss 和 MLM Loss 进行训练:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值