​WSDM 2023 | S2GAE: 简单而有效的自监督图自动编码器框架

f1ed258bb04eed83ee4bf4e12a1b9c05.gif

©PaperWeekly 原创 · 作者 | 张三岁

64077a3209fcb3cf2c729350bb0bbde3.png

论文标题:

S2GAE: Self-Supervised Graph Autoencoders Are Generalizable Learners with Graph Masking

论文链接:

https://dl.acm.org/doi/pdf/10.1145/3539597.3570404

文章来源:

WSDM 2023

ba0adc39266b931932840c3820bfad7a.png

Background

自监督学习(SSL Self-supervised learning)已经在自然语言处理(NLP)和计算机视觉(CV)领域进行了广泛研究,用来提高模型的通用性。最近,越来越多的研究也致力于探索在图(graph)上的自监督学习(SSL),以提高学习到的图(graph)模型对各种图分析任务的适用性,例如链路预测(link prediction)、节点分类(node classification)和图分类(graph classification)任务。

在这些工作中,图自编码器(GAE graph autoencoder)是一种典型的生成式图自监督学习(generative SSL)方法,它通过数据重构表现出较好的节点表征(node representation)学习能力。GAE 通常采用图神经网络 GNNs(graph neural networks)作为编码器(encoder),通过重构边(edge)或节点属性(node attribute)来训练模型。

近年来,许多 GAE 模型被提出,但这些 GAE 工作仅在链路预测(link prediction)任务上表现较好,在节点分类和图分类的任务上则表现较差。这主要是因为传统的 GAE 过于强调重构边或节点属性的相似性(proximity information),而忽略了结构信息(structural information)。

653185a0b67af2848b084c2897629c42.png

Motivation

如 Background 所述,目前还没有任何 GAE 模型能够在链路预测、节点分类和图分类任务中都表现出色,即与当前图自监督学习下的最佳方法——图对比学习(GCL graph contrastive learning)模型相当(笔者注:图对比学习 GCL 是目前图自监督学习 SSL 下的 SOTA 方法)。这使得这篇文章对于 GAE 的通用性产生了研究兴趣。这篇文章的研究主要围绕以下两个问题展开:

1. 为什么传统的 GAE 在图分类任务上表现差强人意?

2. 该如何构建一个通用的(generalizable)GAE框架,使其在链路预测、节点分类和图分类任务上都表现出色?

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值