ICLR 2023 | 中科大等提出分层序列模型,大幅提升数学规划求解效率

54394c1d02c360476c52c8b1bf3a051d.gif

©来源 | 新智元

数学规划求解器因其重要性和通用性,被誉为运筹优化领域的「光刻机」。其中,混合整数线性规划 (Mixed-Integer Linear Programming, MILP) 是数学规划求解器的关键组件,可建模大量实际应用,如工业排产,物流调度,芯片设计,路径规划,金融投资等重大领域。 

近期,中科大 MIRA Lab 王杰教授团队和华为诺亚方舟实验室联合提出分层序列模型(Hierarchical Sequence Model, HEM),大幅提升混合整数线性规划求解器求解效率,相关成果发表于 ICLR 2023。 

目前,算法已整合入华为 MindSpore ModelZoo 模型库,相关技术和能力并将于今年内整合入华为天筹(OptVerse)AI 求解器。该求解器旨在将运筹学和AI相结合,突破业界运筹优化极限,助力企业量化决策和精细化运营,实现降本增效!

0f88739c205acb66f9911dcd05510f6d.png

作者列表:

王治海*,李希君*,王杰**,匡宇飞,袁明轩,曾嘉,张勇东,吴枫

论文链接:

https://openreview.net/forum?id=Zob4P9bRNcK

开源数据集:

https://drive.google.com/drive/folders/1LXLZ8vq3L7v00XH-Tx3U6hiTJ79sCzxY?usp=sharing

PyTorch版本开源代码:

https://github.com/MIRALab-USTC/L2O-HEM-Torch

MindSpore版本开源代码:

https://gitee.com/mindspore/models/tree/master/research/l2o/hem-learning-to-cut

天筹(OptVerse)AI求解器:

https://www.huaweicloud.com/product/modelarts/optverse.html

801363ff477ee1b2bfc1767f6694c43b.png

▲ 图1. HEM 与求解器默认策略(Default)求解效率对比,HEM 求解效率最高可提升 47.28%

bad15cb3741e2454388c4f8c722d3774.png

引言

平面(cutting planes, cuts)对于高效求解混合整数线性规划问题至关重要。其中割平面选择(cut selection)旨在选择待选割平面的恰当子集以提高求解 MILP 的效率。割平面选择在很大程度上取决于两个子问题:(P1)应优先选哪些割平面,以及(P2)应选择多少割平面。 

尽管许多现代 MILP 求解器通过手动设计的启发式方法来处理 (P1) 和 (P2),但机器学习方法有潜力学习更有效的启发式方法。然而,许多现有的学习类方法侧重于学习应该优先选择哪些割平面,而忽略了学习应该选择多少割平面。此外,我们从大量的实验结果中观察到又一子问题,即(P3)应该优先选择哪种割平面顺序,对求解 MILP 的效率也有重大影响。 

为了应对这些挑战,我们提出了一种新颖的分层序列模型(Hierarchical Sequence Model, HEM),并通过强化学习框架来学习割平面选择策略。 

据我们所知,HEM 是首个可同时处理(P1),(P2)和(P3)的学习类方法。实验表明,在人工生成和大规模真实世界 MILP 数据集上,与人工设计和学习类基线相比,HEM 大幅度提高了求解 MILP 的效率。

cc7e47a504c47bf2ac3be87b42ad4a56.png

背景与问题介绍

2.1 割平面(cutting planes, cuts)介绍

混合整数线性规划(Mixed-Integer Linear Programming, MILP)是一种可广泛应用于多种实际应用领域的通用优化模型,例如供应链管理 [1]、排产规划 [2]、规划调度 [3]、工厂选址 [4]、装箱问题 [5] 等。 

标准的 MILP 具有以下形式:

a5876d524082fd4176b9ad2f0c6fc566.png

给定问题(1),我们丢弃其所有整数约束,可得到线性规划松弛(linear programming relaxation, LPR)问题,它的形式为:

1aa2f92a8d779e1c576fa111d7bc6d59.png

由于问题(2)扩展了问题(1)的可行集,因此我们可有,即 LPR 问题的最优值是原 MILP 问题的下界。

给定(2)中的 LPR 问题,割平面(cutting planes, cuts)是一类合法线性不等式,这些不等式在添加到线性规划松弛问题中后,可收缩 LPR 问题中的可行域空间,且不去除任何原 MILP 问题中的整数可行解。

2.2 割平面选择(cut selection)介绍

MILP 求解器在求解 MILP 问题过程中可生成大量的割平面,且会在连续的回合中不断向原问题中添加割平面。具体而言,每一回合中包括五个步骤:

1. 求解当前的 LPR 问题;

2. 生成一系列待选割平面;

3. 从待选割平面中选择一个合适的子集;

4. 将选择的子集添加到 (1) 中的 LPR 问题,以得到一个新的 LPR 问题; 

5. 循环重复,基于新的 LPR 问题,进入下一个回合。 

将所有生成的割平面添加到 LPR 问题中可最大程度地收缩该问题的可行域空间,以最大程度提高下界。然而,添加过多的割平面可能会导致问题约束过多,增加问题求解计算开销并出现数值不稳定问题 [6,7]。 

因此,研究者们提出了割平面选择(cut selection),割平面选择旨在选择候选割平面的适当子集,以尽可能提升 MILP 问题求解效率。割平面选择对于提高解决混合整数线性规划问题的效率至关重要 [8,9,10]。

2.3 启发实验——割平面添加顺序

我们设计了两种割平面选择启发式算法,分别为 RandomAll 和 RandomNV(详见原论文第 3 章节)。它们都在选择了一批割平面后,以随机顺序将选择的割平面添加到 MILP 问题中。如图 2 结果显示,选定同一批割平面的情况下,以不同的顺序添加这些选定割平面对求解器求解效率有极大的影响(详细结果分析见原论文第 3 章节)。

1866e45ce4af754e268ae41a477bc1c6.png

▲ 图2. 每一个柱子代表在求解器中,选定相同的一批割平面,以10轮不同的顺序添加这些选定割平面,求解器最终的求解效率的均值,柱子中的标准差线代表不同顺序下求解效率的标准差。标准差越大,代表顺序对求解器求解效率影响越大。

8e728bbb994c126b1a3b4acad4ed1a7a.png

方法介绍

在割平面选择任务中,应该选择的最优子集是不可事先获取的。不过,我们可以使用求解器评估所选任意子集的质量,并以此评估作为学习算法的反馈。因此,我们利用强化学习(Reinforcement Learning, RL)范式来试错学习割平面选择策略。 

在本节中,我们详细阐述了我们提出的 RL 框架。首先,我们将割平面选择任务建模为马尔科夫决策过程(Markov Decision Process, MDP);然后,我们详细介绍我们提出的分层序列模型(hierarchical sequence model, HEM);最后,我们推导可高效训练 HEM 的分层策略梯度。我们整体的 RL 框架图如图3所示。

a2c8fae6f993d53d1668175594359454.png

▲ 图3. 我们所提出的整体 RL 框架图。我们将 MILP 求解器建模为环境,将 HEM 模型建模为智能体。我们通过智能体和环境不断交互采集训练数据,并使用分层策略梯度训练 HEM 模型。

3.1 问题建模

状态空间:由于当前的 LP 松弛和生成的待选 cuts 包含割平面选择的核心信息,我们通过定义状态。这里  表示当前 LP 松弛的数学模型, 表示候选割平面的集合,表示 LP 松弛的最优解。为了编码状态信息,我们根据的信息为每个待选割平面设计 13 个特征。也就是说,我们通过一个 13 维特征向量来表示状态 s。具体细节请见原文第 4 章节。

动作空间:为了同时考虑所选 cut 的比例和顺序,我们以候选割平面集合的所有有序子集定义动作空间。 

奖励函数:为了评估添加 cut 对求解 MILP 的影响,我们可通过求解时间,原始对偶间隙积分(primal-dual gap integral),对偶界提升(dual bound improvement)。具体细节请见原文第 4 章节。

转移函数:转移函数给定当前状态 和采取的动作 ,输出下一状态 。割平面选择任务中转移函数隐式地由求解器提供。

更多建模细节请见原文第 4 章节。

3.2 策略模型:分层序列模型

如图 3 所示,我们将 MILP 求解器建模为环境,将 HEM 建模为智能体,下面详细介绍所提出的 HEM 模型。为了方便阅读,我们简化方法动机,聚焦于讲清楚方法实现,欢迎感兴趣的读者参见原论文第 4 章节,了解相关细节。

如图 3 中 Agent 模块所示,HEM 由上下层策略模型组成。上下层模型分别学习上层策略(policy)  和下层policy 。

首先,上层策略通过预测恰当的比例来学习应该选择的 cuts 的数量。假设状态长度为 ,预测比率为 ,那么预测应该选择的 cut 数为 ,其中 表示向下取整函数。我们定义 。

其次,下层策略学习选择给定大小的有序子集。下层策略可以定义,其中表示给定状态和比例的动作空间上的概率分布。具体来说,我们将下层策略建模为一个序列到序列模型(sequence to sequence model, sequence model)。

最后,通过全概率定律推导出 cut 选择策略,即:

c84f5bb61ee90ae237696de1a8f36c0c.png

3.3 训练方法:分层策略梯度

给定优化目标函数:

badffb5d92f43cfa27cefbd5faff60e0.png

我们基于策略梯度定理 [11],针对分层策略,推导出其适配的分层策略梯度,并以随机梯度下降的方式优化分层策略模型。如图 3 显示了分层策略梯度:

856d470ce91e6047dc5c0b631f3fd923.png

▲ 图4. 分层策略梯度。我们以此随机梯度下降的方式优化 HEM 模型

303267c5f970440bcb146c9eec0059ed.png

实验介绍

我们的实验有五个主要部分: 

实验 1:在 3 个人工生成的 MILP 问题和来自不同应用领域的 6 个具有挑战性的 MILP 问题基准上评估我们的方法。 

实验 2:进行精心设计的消融实验,以提供对 HEM 的深入洞察。 

实验 3:测试 HEM 针对问题规模的泛化性能。 

实验 4:可视化我们的方法与基线所选择的割平面特点。 

实验 5:将我们的方法部署到华为实际的排产规划问题中,验证 HEM 的优越性。 

我们在此文章中只介绍实验 1,更多实验结果,请参见原论文第 5 章节。请注意,我们论文中汇报的所有实验结果都是基于 PyTorch 版本代码训练得到的结果。 

实验 1 结果如表 1 所示,我们在 9 个开源数据集上对比了 HEM 和 6 个基线的对比结果。实验结果显示,HEM 可平均提升约 20% 求解效率。

94062e9e3687065dd6bd2bfc613fd606.png

▲ 图5. 对easy、medium 和 hard 数据集的策略评估。最优性能我们用粗体字标出。以m表示约束条件的平均数量,n表示变量的平均数量。我们展示了求解时间和primal-dual gap 积分的算术平均值(标准偏差)。

outside_default.png

参考文献

outside_default.png

[1] Paschos, Vangelis Th, ed. Applications of combinatorial optimization. Vol. 3. John Wiley & Sons, 2014. 

[2] Jünger, Michael, et al., eds. 50 Years of integer programming 1958-2008: From the early years to the state-of-the-art. Springer Science & Business Media, 2009. 

[3] Chen, Zhi-Long. "Integrated production and outbound distribution scheduling: review and extensions." Operations research 58.1 (2010): 130-148.

[4] Farahani, Reza Zanjirani, and Masoud Hekmatfar, eds. Facility location: concepts, models, algorithms and case studies. Springer Science & Business Media, 2009. 

[5] Nair, Vinod, et al. "Solving mixed integer programs using neural networks." arXiv preprint arXiv:2012.13349 (2020). 

[6] Wesselmann, Franz, and U. Stuhl. "Implementing cutting plane management and selection techniques." Technical Report. University of Paderborn, 2012. 

[7] Dey, Santanu S., and Marco Molinaro. "Theoretical challenges towards cutting-plane selection." Mathematical Programming 170 (2018): 237-266.

[8] Tang, Yunhao, Shipra Agrawal, and Yuri Faenza. "Reinforcement learning for integer programming: Learning to cut." International conference on machine learning. PMLR, 2020.

[9] Paulus, Max B., et al. "Learning to cut by looking ahead: Cutting plane selection via imitation learning." International conference on machine learning. PMLR, 2022. 

[10] Huang, Zeren, et al. "Learning to select cuts for efficient mixed-integer programming." Pattern Recognition 123 (2022): 108353. 

[11] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

更多阅读

93d9be13813fa1be4699211f68fdbf79.png

8a8fbfef9f310b453abde66ef3850dac.png

09e3d742fabdaa8e8f1a4b3ea0eeccb8.png

7b59836ed9bdd6945303b357cbfa0ba1.gif

#投 稿 通 道#

 让你的文字被更多人看到 

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算

📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿

65b3f6cd9711dc9368a4682aef2681e6.png

△长按添加PaperWeekly小编

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

·

56df77b1b8e21252e59e31444eef8fe3.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值