WWW 2023 | 预训练时空模型新范式

本文提出了一种名为AutoST的新方法,用于解决时空数据中的噪声和分布异质性问题。通过时空异构图神经网络、自动化图增强和自动时空图对比学习,AutoST在犯罪预测、交通预测和房价预测等任务上表现优越,展现出在区域表示学习上的优势。
摘要由CSDN通过智能技术生成

0cbd0fe12d047dee81dad6739dfab116.gif

©PaperWeekly 原创 · 作者 | 张倩茹

单位 | 香港大学

研究方向 | 时空数据挖掘

fa1d6971baea9e7fa328e56f6bc91e50.png

论文题目:

Automated Spatio-Temporal Graph Contrastive Learning

收录会议:

WWW 2023

论文链接:

https://dl.acm.org/doi/10.1145/3543507.3583304

代码链接:

https://github.com/HKUDS/AutoST

港大数据智能实验室(指导老师:黄超)

https://sites.google.com/view/chaoh

343d10035cc5f98398a3967e6b5ae432.png

研究背景

多样的时空数据驱动了时空预测框架在不同的时空应用上的发展,比如交通预测,人们行为的建模,和城市的犯罪率预测等。比如, 受机器学习和大数据驱动下的智能城市管理的启发,人们轨迹模式的挖掘有助于形成更好的城市规划机制, 或者更好的理解犯罪发生相关的动态因素,从而更好的降低犯罪率。

为了应对城市传感场景中的挑战,许多努力一直致力于发展区域表征学习技术,用于研究如何学习复杂区域依赖数据结构有时间和空间两个维度来自地理数据集。而不是提取人工精心设计的区域特征设计,这些区域嵌入方法能够自动发现不同区域之间的空间关系来自收集的时空数据的区域。其中各种区域表示方法,基于图的学习模型, 由于强大的特征表示有效而脱颖而出, 比如基于图形的区域关系。

沿着这条研究线,图形神经网络(GNNs),已被用于聚合复杂关系的强大建模方案信息以及图形连接,例如 MV-PN 和 MVURE。具体来说,这些方法的灵感来自图自动编码器(GAE)和图注意力网络,通过遵循图形结构的消息传递来执行邻域特征聚合。尽管有效的现有的区域表示方法,我们确定了两个以前工作中没有很好解决的关键挑战。

数据噪声和不完整性。由于多种因素(例如,设备部署成本高,或传感器故障),数据噪声和不完整性在收集的时空数据中普遍存在。也就是说,对于基于图的表示方法,预生成的空间图通常包含噪声信息,连接区域之间的依赖性较弱。例如࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值