23年10月,浙江大学联合上海人工智能实验室、香港大学、中国科技大学、悉尼大学发布了UniPAD: A Universal Pre-training Paradigm for Autonomous Driving。
这篇论文也应该属于开创性的工作,BLIP创造性提出了多模态融合通用模型、UniPAD/DriveWorld也创新性提出了自动驾驶多模态预训练通用模型。原论文及代码已经开源。
UniPAD-https://arxiv.org/abs/2310.08370
GitHub -UniPAD: A Universal Pre-training Paradigm for Autonomous Driving (CVPR 2024)
本文对实现过程做了梳理,详见备注灰色字体内容。
本专题由深圳季连科技有限公司AIgraphX自动驾驶大模型团队编辑,旨在学习互助。内容来自网络,侵权即删,转发请注明出处。
Abstract
在自动驾驶的背景下,有效特征学习的重要性
本文介绍了UniPAD,一种应用于自动驾驶的通用预训练方法,通过3D体积可微渲染进行自监督学习。 UniPAD克服了传统3D预训练方法的局限,通过3D神经渲染解码器实现2D和3D框架的融合,提高了3D物体检测和语义分割的性能。在nuScenes数据集上,与现有方法相比,UniPAD取得了最先进的结果。
订阅专栏 解锁全文
1384

被折叠的 条评论
为什么被折叠?



