ICLR 2024 | 微软提出全新LLM剪枝方法:参数减少25%,大幅提升计算效率

d1866df61ab057c3bf09ccac83d1b9d8.gif

©作者 | 张倩、佳琪

来源 | 机器之心

删除权重矩阵的一些行和列,让 LLAMA-2 70B 的参数量减少 25%,模型还能保持 99% 的零样本任务性能,同时计算效率大大提升。这就是微软 SliceGPT 的威力。

大型语言模型(LLM)通常拥有数十亿的参数,用了数万亿 token 的数据进行训练,这样的模型训练、部署成本都非常高。因此,人们经常用各种模型压缩技术来减少它们的计算需求。

一般来讲,这些模型压缩技术可以分为四类:蒸馏、张量分解(包括低秩因式分解)、剪枝和量化。其中,剪枝方法已经存在了一段时间,但许多方法需要在剪枝后进行恢复微调(RFT)以保持性能,这使得整个过程成本高昂且难以扩展。

为了解决这一问题,来自苏黎世联邦理工学院、微软的研究者提出了一个名为 SliceGPT 的方法。SliceGPT 的核心思想是删除权重矩阵中的行和列来降低网络的嵌入维数,同时保持模型性能。

研究人员表示,有了 SliceGPT,他们只需几个小时就能使用单个 GPU 压缩大型模型,即使没有 RFT,也能在生成和下游任务中保持有竞争力的性能。目前,该论文已经被 ICLR 2024 接收。

ee4e9086ed8e1c29e5c632dd271b9bfa.png

论文标题:

SliceGPT: Compress Large Language Models by Deleting Rows and Columns

论文地址:

https://arxiv.org/pdf/2401.15024.pdf

剪枝方法的工作原理是将 LLM 中权重矩阵的某些元素设置为零,并(选择性地)更新矩阵的周围元素以进行补偿。其结果是形成了一种稀疏模式,这意味着在神经网络前向传递所需的矩阵乘法中,可以跳过一些浮点运算。

运算速度的相对提升取决于稀疏程度和稀疏模式:结构更合理的稀疏模式会带来更多的计算增益。与其他剪枝方法不同,SliceGPT 会剪掉(切掉!)权重矩阵的整行或整列。在切之前,他们会对网络进行一次转换,使预测结果保持不变,但允许剪切过程带来轻微的影响。

结果是权重矩阵变小了,神经网络块之间传递的信号也变小了:他们降低了神经网络的嵌入维度。

下图 1 将 SliceGPT 方法与现有的稀疏性方法进行了比较。

8d9048abe1efe6e0dc27b79185b096e9.png

通过大量实验,作者发现 SliceGPT 可以为 LLAMA-2 70B、OPT 66B 和 Phi-2 模型去除多达 25% 的模型参数(包括嵌入),同时分别保持密集模型 99%、99% 和 90% 的零样本任务性能。

经过 SliceGPT 处理的模型可以在更少的 GPU 上运行,而且无需任何额外的代码优化即可更快地运行:在 24GB 的消费级 GPU 上,作者将 LLAMA-2 70B 的推理总计算量减少到了密集模型的 64%;在 40GB 的 A100 GPU 上,他们将其减少到了 66%。

此外,他们还提出了一种新的概念,即 Transformer 网络中的计算不变性(computational invariance),它使 SliceGPT 成为可能。

3b4e8f5866abfa42102ef88f910ee398.png

SliceGPT 详解

SliceGPT 方法依赖于 Transformer 架构中固有的计算不变性。这意味着,你可以对一个组件的输出应用一个正交变换,只要在下一个组件中撤销即可。作者观察到,在网络区块之间执行的 RMSNorm 运算不会影响变换:这些运算是可交换的。

在论文中,作者首先介绍了在 RMSNorm 连接的 Transformer 网络中如何实现不变性,然后说明如何将使用 LayerNorm 连接训练的网络转换为 RMSNorm。接下来,他们介绍了使用主成分分析法(PCA)计算各层变换的方法,从而将区块间的信号投射到其主成分上。最后,他们介绍了删除次要主成分如何对应于切掉网络的行或列。

Transformer网络的计算不变性

用 Q 表示正交矩阵:38d81732bab5313366179c82fe7f24f9.png

  • 注意,向量 x 乘以 Q 不会改变向量的 norm,因为在这项工作中,Q 的维度总是与 transformer D 的嵌入维度相匹配。

假设 X_ℓ 是 transformer 一个区块的输出,经过 RMSNorm 处理后,以 RMSNorm (X_ℓ) 的形式输入到下一个区块。如果在 RMSNorm 之前插入具有正交矩阵 Q 的线性层,并在 RMSNorm 之后插入 Q^⊤,那么网络将保持不变,因为信号矩阵的每一行都要乘以 Q、归一化并乘以 Q^⊤。此处有:   

e501c1beb15ab92cb62ffd264d0919a1.png

现在,由于网络中的每个注意力或 FFN 块都对输入和输出进行了线性运算,可以将额外的运算 Q 吸收到模块的线性层中。由于网络包含残差连接,还必须将 Q 应用于所有之前的层(一直到嵌入)和所有后续层(一直到 LM Head)的输出。

不变函数是指输入变换不会导致输出改变的函数。在本文的例子中,可以对 transformer 的权重应用任何正交变换 Q 而不改变结果,因此计算可以在任何变换状态下进行。作者将此称为计算不变性,并在下面的定理中加以定义。

定理 1:设 1698f075d734cc69e89f885a4c65b609.pngc93e6e4af99242a0bcfdf9cc9b07b144.png为 RMSNorm 连接的 transformer 网络第 ℓ 块线性层的权重矩阵,4b4fd9cf322c5b4c23aaa7397bb188d5.png5a6db1718138b9e65b57f78104d52803.png为相应的偏置(如果有),W_embd 和 W_head 为嵌入矩阵和头矩阵。设 Q 是维数为 D 的正交矩阵,那么下面的网络就等同于原来的 transformer 网络:

cf3512c9a1c287f927c0b8b4814a87aa.png

复制输入偏置和头偏置:

be7637678e5ff75ce6916c18cef327dd.png

可以通过算法 1 来证明,转换后的网络计算出的结果与原始网络相同。

aa61a0a0a5fdfd1ea16a8c439522e9b2.jpeg

LayerNorm Transformer可以转换为RMSNorm

Transformer 网络的计算不变性仅适用于 RMSNorm 连接的网络。在处理使用 LayerNorm 的网络之前,作者先将 LayerNorm 的线性块吸收到相邻块中,从而将网络转换为 RMSNorm。

e4ac695c71044b08301d25df7f324e70.png

图 3 显示了 Transformer 网络(见图 2)的这种转换。在每个区块中,作者将输出矩阵 W_out 与均值减法矩阵 M 相乘,后者考虑了后续 LayerNorm 中的均值减法。输入矩阵 W_in 被前面 LayerNorm 块的比例预乘。嵌入矩阵 W_embd 必须进行均值减法,而 W_head 必须按照最后一个 LayerNorm 的比例重新缩放。这只是运算顺序的简单改变,不会影响网络输出。

f921b91c0fcd6e4e07d4477ebc292f73.png

每个块的转换

现在 transformer 中的每个 LayerNorm 都已转换为 RMSNorm,可以选择任意 Q 来修改模型。作者最初的计划是从模型中收集信号,利用这些信号构建一个正交矩阵,然后删除部分网络。他们很快发现,网络中不同区块的信号并没有对齐,因此他们需要在每个区块应用不同的正交矩阵,即 Q_ℓ。

如果每个区块使用的正交矩阵不同,则模型不会改变,证明方法与定理 1 相同,但算法 1 第 5 行除外。在这里可以看到,残差连接和块的输出必须具有相同的旋转。为了解决这个问题,作者通过对残差进行线性变换  06b7e928527b81f03e624154f826159f.png 来修改残差连接。

图 4 显示了如何通过对残差连接进行额外的线性运算,对不同的区块进行不同的旋转。与权重矩阵的修改不同,这些附加运算无法预先计算,并且会给模型增加少量(D × D)开销。尽管如此,还是需要通过这些操作来对模型进行切除操作,而且可以看到整体速度确实加快了。

b1cddbb828ecda6063b474b6cdf97815.png

为了计算矩阵 Q_ℓ,作者使用了 PCA。他们从训练集中选择一个校准数据集,在模型中运行(在将 LayerNorm 运算转换为 RMSNorm 之后),并提取该层的正交矩阵。更确切地说,如果 73ace6ee82a857e58f8427d43dac1912.png 他们使用转换后网络的输出来计算下一层的正交矩阵。更确切地说,如果 0ee530cb7690db415485b38ea9b3caba.png 是校准数据集中第 i 个序列的第 ℓ 个 RMSNorm 模块的输出,计算:

87657c7704e024d8d90d07b422969555.png

并将 Q_ℓ设为 C_ℓ 的特征向量,按特征值递减排序。

切除

主成分分析的目标通常是获取数据矩阵 X 并计算低维表示 Z 和近似重构5ff10d3a8393200e965752f8a690801b.png

cd1d1fac282f065d66796ec83724c33e.png

其中 Q 是 c882569191ed110b5cc154997b80e531.png 的特征向量,D 是一个 D × D 小删除矩阵(包含 D × D 同位矩阵的 D 小列),用于删除矩阵左边的一些列。从 QD 是最小化 2fec49234efd049c5ee46376c0b2baee.png 的线性映射的意义上来说,重建是 L_2 最佳(L_2 optimal)的。

当对区块间的信号矩阵 X 应用 PCA 时,作者从未将 N × D 信号矩阵具体化,而是将删除矩阵 D 应用于构建该矩阵前后的运算。在上述运算中,该矩阵已乘以 Q。作者删除了 W_in 的行以及 W_out 和 W_embd 的列。他们还删除了插入到残差连接中的矩阵 09cb0c1d3cdb16c5a3689ce743a4ae3b.png 的行和列(见图 4)。

efd7002a35374af40d71da7fa4665aaf.png

实验结果

生成任务

作者对经过 SliceGPT 和 SparseGPT 剪裁后大小不同的 OPT 和 LLAMA-2 模型系列在 WikiText-2 数据集中进行了性能评估。表 1 展示了模型经过不同级别的剪裁后保留的复杂度。相比 LLAMA-2 模型,SliceGPT 在应用于 OPT 模型时表现出了更优越的性能,这与作者根据模型频谱的分析得出的推测相符。

11f58a94259c263e045c6623e1b74df7.png

SliceGPT 的性能将随着模型规模的增大而提升。在对所有 LLAMA-2 系列模型剪裁 25% 情况下,SparseGPT 2:4 模式的表现都逊于 SliceGPT。对于 OPT,可以发现在除 2.7B 模型之外的所有模型中,30% 切除比例的模型的稀疏性都优于 2:4 的稀疏性。

零样本任务

作者采用了 PIQA、WinoGrande、HellaSwag、ARC-e 和 ARCc 五个任务来评估 SliceGPT 在零样本任务上的表现,他们在评估中使用了 LM Evaluation Harness 作为默认参数。

41dd0f734365da1abbca3301af4849e4.jpeg

图 5 展示了经过剪裁的模型在以上任务中取得的平均分数。图中上行显示的是 SliceGPT 在 WikiText-2 中的平均准确率,下行显示的是 SliceGPT 在 Alpaca 的平均准确率。从结果中可以观察到与生成任务中类似的结论:OPT 模型比 LLAMA-2 模型更适应压缩,越大的模型经过剪裁后精度的下降越不明显。

作者在 Phi-2 这样的小模型中测试了 SliceGPT 的效果。经过剪裁的 Phi-2 模型与经过剪裁的 LLAMA-2 7B 模型表现相当。最大型的 OPT 和 LLAMA-2 模型可以被有效压缩,当从 66B 的 OPT 模型中删除 30% 时,SliceGPT 可以做到仅损失了几个百分点。

作者还进行了恢复微调(RFT)实验。使用 LoRA 对剪裁过的 LLAMA-2 和 Phi-2 模型进行了少量 RFT。

e8b3b59826cf22ee208b1ddf143541dc.png

实验结果如图 6 所示。可以发现,RFT 的结果在 WikiText-2 和 Alpaca 数据集存在显著差异,模型在 Alpaca 数据集中展现了更好的性能。作者认为出现差异的原因在于 Alpaca 数据集中的任务和基准任务更接近。

对于规模最大的 LLAMA-2 70B 模型,剪裁 30% 再进行 RFT 后,最终在 Alpaca 数据集中的平均准确率为 74.3%,原稠密模型的准确率为 76.6%。经过剪裁的模型 LLAMA-2 70B 保留了约 51.6B 个参数,其吞吐量得到了显著提高。

作者还发现 Phi-2 无法在 WikiText-2 数据集中,从被剪裁过的模型中恢复原有准确率,但在 Alpaca 数据集中能恢复几个百分点的准确率。被剪裁过 25% 并经过 RFT 的 Phi-2 在 Alpaca 数据集中,平均准确率为 65.2%,原稠密模型的准确率为 72.2%。剪裁过的模型保留了 2.2B 个参数,保留了 2.8B 模型准确率的 90.3%。这表明即使是小型语言模型也可以有效剪枝。

基准吞吐量

和传统剪枝方法不同,SliceGPT 在矩阵 X 中引入了(结构化)稀疏性:整列 X 被切掉,降低了嵌入维度。这种方法既增强了 SliceGPT 压缩模型的计算复杂性(浮点运算次数),又提高了数据传输效率。

在 80GB 的 H100 GPU 上,将序列长度设置为 128,并将序列长度批量翻倍找到最大吞吐量,直到 GPU 内存耗尽或吞吐量下降。作者比较了剪裁过 25% 和 50% 的模型的吞吐量与原稠密模型 80GB 的 H100 GPU 上的吞吐量。剪裁过 25% 的模型最多实现了 1.55 倍的吞吐量提升。

在剪裁掉 50% 的情况下,最大的模型在使用一个 GPU 时,吞吐量实现了 3.13 倍和 1.87 倍的大幅增加。这表明在 GPU 数量固定的情况下,被剪裁过的模型的吞吐量将分别达到原稠密模型的 6.26 倍和 3.75 倍。

经过 50% 的剪裁后,虽然 SliceGPT 在 WikiText2 中的保留的复杂度比 SparseGPT 2:4 差,但吞吐量却远超 SparseGPT 的方法。对于大小为 13B 的模型,在内存较少的消费级 GPU 上,小模型的吞吐量可能也会有所提高。

推理时间

作者还研究了使用 SliceGPT 压缩的模型从端到端的运行时间。表 2 比较了在 Quadro RTX6000 和 A100 GPU 上,OPT 66B 和 LLAMA-2 70B 模型生成单个 token 所需的时间。

可以发现,在 RTX6000 GPU 上,对模型剪裁过 25% 后,推理速度提高了 16-17%;在 A100 GPU 上,速度提高了 11-13%。相比原稠密模型,对于 LLAMA-2 70B,使用 RTX6000 GPU 所需的计算量减少了 64%。作者将这种提升归功于 SliceGPT 采用了用较小的权重矩阵替换原权重矩阵,并使用了 dense kernels ,这是其他剪枝方案无法实现的。

1ee5664abda94e7a79c6b18cff50d60f.png

作者表示,在撰写本文时,他们的基线 SparseGPT 2:4 无法实现端到端的性能提升。相反,他们通过比较 transformer 层中每个运算的相对时间,将 SliceGPT 与 SparseGPT 2:4 进行比较。他们发现,对于大型模型,SliceGPT (25%) 与 SparseGPT (2:4) 在速度提升和困惑度方面具有竞争力。

计算成本 

所有 LLAMA-2、OPT 和 Phi-2 模型都可以在单个 GPU 上花费 1 到 3 小时的时间进行切分。如表 3 所示,通过恢复微调,可以在 1 到 5 个小时内压缩所有 LM。

7c9f720d7494f2c33a7d1926d3ce4e08.png

了解更多内容,请参考原论文。

更多阅读

c4a0543bf7e07c04e8151d54edba66b8.png

ae4b703b30d72111d888b4900186a4d6.png

f201e19dcbc333730df7d84f662d9d98.png

ed3bf8295f9b53dad796eb40b518bfd1.gif

#投 稿 通 道#

 让你的文字被更多人看到 

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算

📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿

a85e1d56301da6f3bc163496d16c728a.png

△长按添加PaperWeekly小编

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

·

60010903e0ff15575fdb98a393cf4fb3.jpeg

为了在Windows安装ADB工具,你可以按照以下步骤进行操作: 1. 首先,下载ADB工具包并解压缩到你自定义的安装目录。你可以选择将其解压缩到任何你喜欢的位置。 2. 打开运行窗口,可以通过按下Win+R键来快速打开。在运行窗口中输入"sysdm.cpl"并按下回车键。 3. 在系统属性窗口中,选择"高级"选项卡,然后点击"环境变量"按钮。 4. 在环境变量窗口中,选择"系统变量"部分,并找到名为"Path"的变量。点击"编辑"按钮。 5. 在编辑环境变量窗口中,点击"新建"按钮,并将ADB工具的安装路径添加到新建的路径中。确保路径正确无误后,点击"确定"按钮。 6. 返回到桌面,打开命令提示符窗口。你可以通过按下Win+R键,然后输入"cmd"并按下回车键来快速打开命令提示符窗口。 7. 在命令提示符窗口中,输入"adb version"命令来验证ADB工具是否成功安装。如果显示版本信息,则表示安装成功。 这样,你就成功在Windows安装ADB工具。你可以使用ADB工具来执行各种操作,如枚举设备、进入/退出ADB终端、文件传输、运行命令、查看系统日志等。具体的操作方法可以参考ADB工具的官方文档或其他相关教程。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* [windows环境安装adb驱动](https://blog.csdn.net/zx54633089/article/details/128533343)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [Windows安装使用ADB简单易懂教程](https://blog.csdn.net/m0_37777700/article/details/129836351)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值