引言
可控文本生成(Controlled Text Generation, CTG)是大语言模型(Large Language Models, LLMs)文本生成的一个重要研究领域,旨在创造出符合特定标准或属性的文本。这包括调整文本的情绪倾向、确保内容安全性、或满足具体主题要求等。
目前 CTG 实现的主流方式是结合有监督微调(Supervised Fine-Tuning, SFT)和人类反馈强化学习(Reinforcement Learning from Human Feedback, RLHF)的范式,通过直接改变模型参数以适应特定的输出要求。但 SFT+RLHF 范式通常要求对基座模型进行专门的微调,限制了其在不同模型间的迁移能力。
另一种策略是在解码阶段调整概率,这种策略提供了更高的灵活性,允许在不修改模型本身的前提下控制文本的生成,使其可广泛应用于各种 LLMs。已有尝试利用小型语言模型来影响大模型的解码过程,从而控制输出文本的特定条件。
但是,这种外部控制可能会影响文本的质量,使其失去自然性和流畅性。近期研究 Air-decoding 指出,过度控制解码过程可能会损害文本的自然性和流畅性,导致生成文本的质量下降。
因此,CTG 的一个关键挑战是,如何在保持文本流畅性的同时,有效地实现对生成文本的控制。这需要一种能够在不影响 LLMs 固有生成能力的前提下,对文本的特定属性进行精确控制的方法。
论文标题:
Controlled Text Generation for Large Language Model with Dynamic Attribute Graphs
论文地址:
https://arxiv.org/abs/2402.11218
代码地址:
https://github.com/IAAR-Shanghai/DATG
本文提出了一种动态属性图(Dynamic Attribute Graphs-based, DATG)引导的可控文本生成方法,旨在在解码阶段实现对文本属性的精确控制,同时保持文本的自然流畅性。该方法利用动态属性图来评估和调整与目标属性相关的关键词,通过调整关键属性词的出现,在不牺牲文本质量的情况下,实现对生成文本属性的有效控制。