无需RLHF? 基于图增强的大模型可控生成框架

本文提出了一种名为 DATG 的动态属性图引导的可控文本生成方法,旨在在不损害文本流畅性的情况下,通过解码阶段调整关键词来精确控制大型语言模型(LLMs)生成文本的特定属性。DATG 解码处理框架包括语境语料库构建、属性分类器评分、动态属性图构建和动态边界控制下的文本重生成,实现了对生成文本的属性有效控制,同时保持文本质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

a87321a1732c8ee81fe475c49ef40eaa.gif

279f15d139021878ec1313df705e7bd1.png

引言

可控文本生成(Controlled Text Generation, CTG)是大语言模型(Large Language Models, LLMs)文本生成的一个重要研究领域,旨在创造出符合特定标准或属性的文本。这包括调整文本的情绪倾向、确保内容安全性、或满足具体主题要求等。

目前 CTG 实现的主流方式是结合有监督微调(Supervised Fine-Tuning, SFT)和人类反馈强化学习(Reinforcement Learning from Human Feedback, RLHF)的范式,通过直接改变模型参数以适应特定的输出要求。但 SFT+RLHF 范式通常要求对基座模型进行专门的微调,限制了其在不同模型间的迁移能力。

另一种策略是在解码阶段调整概率,这种策略提供了更高的灵活性,允许在不修改模型本身的前提下控制文本的生成,使其可广泛应用于各种 LLMs。已有尝试利用小型语言模型来影响大模型的解码过程,从而控制输出文本的特定条件。

但是,这种外部控制可能会影响文本的质量,使其失去自然性和流畅性。近期研究 Air-decoding 指出,过度控制解码过程可能会损害文本的自然性和流畅性,导致生成文本的质量下降。

因此,CTG 的一个关键挑战是,如何在保持文本流畅性的同时,有效地实现对生成文本的控制。这需要一种能够在不影响 LLMs 固有生成能力的前提下,对文本的特定属性进行精确控制的方法。

44408ee5a885d0d58b42be3560d42fc1.png

论文标题:

Controlled Text Generation for Large Language Model with Dynamic Attribute Graphs

论文地址:

https://arxiv.org/abs/2402.11218

代码地址:

https://github.com/IAAR-Shanghai/DATG

本文提出了一种动态属性图(Dynamic Attribute Graphs-based, DATG)引导的可控文本生成方法,旨在在解码阶段实现对文本属性的精确控制,同时保持文本的自然流畅性。该方法利用动态属性图来评估和调整与目标属性相关的关键词,通过调整关键属性词的出现,在不牺牲文本质量的情况下,实现对生成文本属性的有效控制。

d141c3047750c7236d3bf6ab13b137f3.png

DATG方法介绍

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值