©PaperWeekly 原创 · 作者 | 徐榕桧
单位 | 中南大学
研究方向 | 时序数据分析、时序大模型
摘要
随着移动感知技术的普及,各个领域产生和积累了大量的时间序列数据,为众多实际应用提供了动力。在这种背景下,时间序列异常检测具有重要的实际意义。它旨在从时间序列中识别出偏离正常样本分布的异常样本。现有的方法通常假设所有时间序列数据都集中在一个中央位置。然而,由于各种边缘设备的部署,越来越多的时间序列数据需要分散收集。
为了解决分散时间序列数据与集中异常检测算法之间的差距,作者提出了一个名为 PeFAD(Parameter-efficient Federated Anomaly Detection,参数高效的联邦异常检测)的框架,以应对日益增长的隐私问题。PeFAD 首次使用预训练语言模型(PLM)作为客户端本地模型的主体,利用其跨模态知识转移能力。
为了减少通信开销和本地模型适应成本,作者提出了一个参数高效的联邦训练模块,使客户端只需微调小规模参数并将其传输到服务器进行更新。PeFAD 利用一种新颖的异常驱动掩码选择策略来减轻训练期间异常的影响。此外,作者还提出了一种在所有客户端共享的隐私保护数据集合成与知识蒸馏机制,以解决客户端之间的数据异质性问题。
作者在四个真实数据集上进行了广泛的评估,结果表明,PeFAD 相对于现有的最新基线方法具有高达 28.74% 的性能提升。
论文标题:
PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection
论文作者:
Ronghui Xu, Hao Miao, Senzhang Wang, Philip S. Yu, Jianxin Wang
作者机构:
中南大学,奥尔堡大学,伊利诺大学芝加哥分校
收录会议:
KDD 2024
文章链接:
https://arxiv.org/abs/2406.02318
代码链接:
https://github.com/xu737/PeFAD