©作者 | 周培林
单位 | 香港科技大学(广州)
随着大语言模型(LLMs)日渐“拟人化”,能写报告、能画图、还能“冲浪查资料”,不少人以为它们已能应对各种任务。
但这次,一项由港科大(广州)、北大、浙大、阿里、字节跳动、NIO 等机构联合发布的新基准测试集—— BrowseComp-ZH,让 20 多个中外主流大模型集体“挂科”:GPT-4o 在测试中准确率仅 6.2%;多数国产 / 国际模型准确率跌破 10%;即便是目前表现最好的 OpenAI DeepResearch,也仅得 42.9%。
研究团队直言:
“当前主流模型,距离成为真正懂中文互联网的智能体,还差得远。”
论文标题:
BrowseComp-ZH: Benchmarking Web Browsing Ability of Large Language Models in Chinese
论文地址:
https://arxiv.org/abs/2504.19314
代码地址:
https://github.com/PALIN2018/BrowseComp-ZH
为什么我们需要中文网页能力测试?
如今的大模型越来越擅长“用工具”:能连搜索引擎、能调用插件、能“看网页”。但众多评估工具都只在英文语境下建立,对中文语境、中文搜索引擎、中文平台生态考虑甚少。然而,中国互联网信息碎片化严重、搜索入口多样、语言表达复杂。中文网页世界到底有多难?举几个例子你就明白了:
信息碎片化,分散在百度百科、微博、地方政府网站、视频号等多平台
常见的语言结构中含有省略、典故、代指,关键词检索常常“跑偏”
搜索引擎本身质量参差,信息“沉底”或“走丢”都是常事
因此,英文测试集“翻译一下”根本不够。需要从中文语境原生设计,才能真正衡量大模型是否能在中文网页上“看得懂”“搜得到”“推得准”。
BrowseComp-ZH 是怎么炼成的?
研究团队采用了“逆向设计法”:从一个明确、可验证的事实答案出发(如某个画种、机构、影视剧名),反向构造出多个约束条件的复杂问题,确保以下三点:
百度 / Bing / Google 三大搜索引擎首屏无法直接命中答案
多个主流大模型在检索模式下也无法直接答对
经过人工验证,问题结构清晰,且仅有唯一答案
最终,他们构建了 289 道高难度中文多跳检索题目,覆盖影视、艺术、医学、地理、历史、科技等 11 大领域。
大模型集体“翻车”?DeepResearch 勉强破四成,绝大多数连 10% 都不到
在 BrowseComp-ZH 的测试下,多款国内外主流大模型集体“翻车”:
尽管这些模型在对话理解、生成表达方面已展现强大实力,但在面对中文互联网的复杂检索任务时,准确率普遍低得惊人——
1. 多数模型准确率低于 10%,仅少数能突破 20%
2. OpenAI DeepResearch 以 42.9% 位列第一,仍远未“及格”
研究者指出,这一结果说明:模型不仅需要会“查资料”,更要会“多跳推理”与“信息整合”,才能在中文互联网中真正找到答案。
四大发现,揭示中文网页任务的“模型死角”
4.1 仅靠记忆不行,得真本事
纯靠参数记忆(无搜索)的模型准确率往往低于 10%,说明“硬背”不靠谱。
4.2 有推理的模型,表现更好
DeepSeek-R1(23.2%)比 DeepSeek-V3(8.7%)整整高出 14.5%,Claude-3.7 也比 Claude-3.5 提升了 12.2%,推理能力成为关键变量。
4.3 搜得多 ≠ 搜得准,多轮策略才是王道
具备 多轮检索能力 的 AI 搜索产品全面胜出:
DeepResearch:42.9%
豆包 Deep Search:26.0%
Perplexity Research 模式:22.6%
相比之下,只检索一次的模型(如 Kimi、Yuanbao)准确率低至个位数。
4.4 搜索功能“翻车”?接入反而变差
最典型的反例是 DeepSeek-R1,开启搜索功能后准确率从 23.2% 断崖式跌至 7.6%。
研究指出,模型未能将网页检索信息与已有知识有效融合,反而被误导。
数据集开放!欢迎模型开发者挑战
BrowseComp-ZH 的全部数据已开源发布:
项目地址:
https://github.com/PALIN2018/BrowseComp-ZH
研究者希望此基准测试能成为推动 LLM 在中文信息环境落地的试金石,助力构建真正“会用中文上网”的智能体。下一步,他们计划扩充样本规模,拓展问答形式,并深入分析模型推理路径与失败案例。
更多阅读
#投 稿 通 道#
让你的文字被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析、科研心得或竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。
📝 稿件基本要求:
• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注
• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题
• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算
📬 投稿通道:
• 投稿邮箱:hr@paperweekly.site
• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者
• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿
△长按添加PaperWeekly小编
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧
·