阿里巴巴虾米的机器学习与深度学习进阶记

20世纪70年代初,一名名叫Geoffrey Hinton的英国研究生开始制作简单的数学模型,来描述人脑中的神经元是如何直观地理解世界的。被称为人工神经网络的技术几十年来一直被认为是不切实际的。但是在2012年,Hinton和他在多伦多大学的两个研究生用神经网络来大幅提高计算机识别照片中物体的准确性。不到六个月,谷歌就收购了一家由三名研究人员创办的初创公司。以前模糊的人工神经网络现在是硅谷的热门话题。


深度学习是传统神经网络的发展延伸,随着AlphaGo的热潮成为当前机器学习最火热的前沿方向之一,大规模数据集加上深度卷积神经网络( CNNs )强大的表达能力,形成了超精确和鲁棒的模型。只有一个挑战仍然存在:如何设计你的模型。


深度学习领域的特点是适合读的成熟教材几乎没有,但有浩瀚如烟的一大堆论文构成整个知识体系的各种细节,所以体系化这些知识,是学习者面对的首要困难。其次,这些领域大多涉及深涩艰难的算法模型,比如Hopfield网络,受限玻尔兹曼机,自编码器,卷积神经网络,深度置信网络等,基础稍差的人,估计即使花上几年去读,也不可能取得多大的自我进展。知识难以理解的程度超出了很多学习者的极限。


来吧smiley_84.pngsmiley_84.png


陆家嘴学堂

邀请AI技术专家虾米

推出 机器学习与深度学习进阶一期(22天)


深度学习的浪潮重塑了很多的领域,也包括机器学习本身。本课程从Python基础入手,逐步过渡到机器学习的基本问题(诸如回归和分类),从中慢慢帮着学员建立使用机器学习解决问题的思维。课程中期会引入深度学习的概念,包括深度学习常用的组件例如卷积层、全连层等。在熟悉这些基本构件后,会进一步介绍深度学习在实际应用中的技巧。随后以专题的形式介绍图像分类、目标检测、以及对抗学习一些新常用的模型。课程避免冗长的公式解读,会从公式背后原理入手,帮助学员更好的理解各个知识点。


机器学习是一门偏工程的学科,本课程安排了很多的案例讲解,或是动手实现简单模型,或者分析复杂模型的实现过程。此外机器学习的模型和算法很多,本课程不会为宽泛的覆盖过多的算法,而是精心选取最常用知识点进行讲解。我们深知培养学员使用机器学习解决问题的思维,其意义远远大于算法的灌输。


虾米

640?

AI技术专家、阿里巴巴 机器学习高级算法工程师

计算机硕士。毕业后在Canon研究院从事机器学习、计算机视觉的研究,对人脸表情和人体姿态识别经验丰富。后加入阿里巴巴,从事deep learning相关的工作。分别参与对抗学习、混合精度训练、模型可解释性相关的项目。使用对抗学习发布阿里巴巴第一套AI字体。发表学术论文多篇,3篇专利正在申请。


640?wx_fmt=jpeg

//  课程详情  //

早鸟活动优惠:拼团优惠价199元

课程原价:899元

开课时间:2月22开课

课程更新频次:每周二和周四晚上20:00-21:00

每学时时长:50分钟左右

课程形式:录播视频 & 微信群互动 & 直播答疑

学习:通过微信服务号(陆家嘴学堂)在线学习

有同步课件可以下载,一次付费永久观看。

作业:每次课程更新后,将通过服务号发布实战作业

授课形式:手机、电脑均可直接登录听课

课后:安排专门答疑时间,解决学员学习问题。

课程容量:共22天18章22节


听课方式:

报名后可在陆家嘴学堂”-“学堂频道”-“频道首页”-“深度学习之tensorflow进阶一期(22天)。课程专栏中的“课程后续操作指南”会指示操作进行扫码验证入群,加入班级群后按照班主任提示等待正式开课即可。


团购优惠

原价899元,拼团优惠价199元

课程报名

640?

长按识别二维码即可报名哦

640?640?640?

640?wx_fmt=png

有任何问题都可以咨询陆家嘴学堂助教zndb001


听课流程:

1. 扫码支付购买课程

2. 关注公众号“陆家嘴学堂”

3. 点开公众号“陆家嘴学堂”里中间的菜单“学堂频道”,可在课程列表里找到“报名的课程”,点开即可听课

4. 在“课程”的“目录”里,有“必读”,点开即可扫码进入付费群。(付费群用于同学们交流沟通,不影响正常听课)

注:

1. 本课程为一次性付款,无需缴纳其它任何费用,在第一节课更新后48小时内可申请退款,48小时后不予退款,报名前请谨慎考虑。

2. 如果你有其他相关问题,可以加课程顾问微信(zndb001)咨询相关事宜。


640?wx_fmt=gif点击阅读原文购买课程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值