基于yolov5的人体行为检测
文章目录
一、项目背景/总体设计
- 目标检测是计算机视觉中从图像或视频中确定并定位多个目标。
- 人、车辆、动物、物体等
- 目标检测包括两个主要步骤:目标定位和目标分类。
- 人体行为检测的目的是通过分析和理解人体在图像或视频中的行为,从中获取关于人的动作、姿态和行为的信息。其主要目标可以归纳为以下几点:
- 行为理解:人体行为检测旨在识别和理解人体在特定场景下的行为模式。
- .姿态估计:人体行为检测可以通过对人体关节位置和姿态的分析,实现对人体姿态的估计。
- 动作识别:人体行为检测可以将人体的动作进行分类和识别,例如行走、跑步、打开门等
- 事件检测:人体行为检测可以帮助识别和检测特定的事件或行为,例如摔倒、拥堵、抢劫等。
- 意义所在:人体跌倒是人们日常生活中常见姿态之一,且跌倒的发生具有随机、难以预测的特点;
其次,跌倒会给人体造成不同程度的伤害,很多人跌倒后由于得不到及时的救助而加重受到的伤害,甚至出现残疾或者死亡的情况;同时随着人口老龄化问题的日渐加剧,跌倒已经成为了我国65周岁以上老人受伤致死的主要原因。
因此,跌倒事件严重影响着人们的身体健康,跌倒检测具有十分重要的研究意义。人体行为检测在安全防护、交通管理、健康医疗、用户体验和人机交互以及社会科学研究等多个领域具有重要的意义。它能够为我们提供更智能化、高效率、安全可靠的应用和服务,推动社会的进步和发展。
二、项目开发
1.数据集
数据大小 | 12400 |
---|---|