基于yolov5 人体行为检测 跌倒 站立 蹲下 坐下 跑 五种行为检测目标检测

该博客介绍了基于YOLOv5的人体行为检测项目,涵盖数据集处理、网络结构、损失函数优化、算法设计等方面。目标包括跌倒、站立、蹲下、坐下和跑五种行为,具有行为理解、姿态估计和动作识别等应用。通过训练和验证,展示了模型在行为检测中的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于yolov5的人体行为检测


一、项目背景/总体设计

  1. 目标检测是计算机视觉中从图像或视频中确定并定位多个目标。
  • 人、车辆、动物、物体等
  • 目标检测包括两个主要步骤:目标定位和目标分类。
  1. 人体行为检测的目的是通过分析和理解人体在图像或视频中的行为,从中获取关于人的动作、姿态和行为的信息其主要目标可以归纳为以下几点:
  • 行为理解:人体行为检测旨在识别和理解人体在特定场景下的行为模式。
  • .姿态估计:人体行为检测可以通过对人体关节位置和姿态的分析,实现对人体姿态的估计。
  • 动作识别:人体行为检测可以将人体的动作进行分类和识别,例如行走、跑步、打开门等
  • 事件检测:人体行为检测可以帮助识别和检测特定的事件或行为,例如摔倒、拥堵、抢劫等。
  1. 意义所在:人体跌倒是人们日常生活中常见姿态之一,且跌倒的发生具有随机、难以预测的特点;
    其次,跌倒会给人体造成不同程度的伤害,很多人跌倒后由于得不到及时的救助而加重受到的伤害,甚至出现残疾或者死亡的情况;同时随着人口老龄化问题的日渐加剧,跌倒已经成为了我国65周岁以上老人受伤致死的主要原因。

因此,跌倒事件严重影响着人们的身体健康,跌倒检测具有十分重要的研究意义。人体行为检测在安全防护、交通管理、健康医疗、用户体验和人机交互以及社会科学研究等多个领域具有重要的意义。它能够为我们提供更智能化、高效率、安全可靠的应用和服务,推动社会的进步和发展。

在这里插入图片描述
在这里插入图片描述

二、项目开发

1.数据集

数据大小 12400
### 行为检测方法概述 行为检测技术通常依赖于传感器数据采集和模式识别算法,以实现对人体动作的有效分类。以下是几种常见的用于区分跌倒站立蹲下坐下步的方法: #### 1. **基于加速度计的数据分析** 加速度计是一种常用的惯性测量单元 (IMU),能够捕捉人体运动中的线性加速度变化。通过对加速度信号的时间域特征提取,可以有效地区分不同的动作。 - 对于**跌倒**,其典型特征是短时间内存在剧烈的加速度峰值以及随后的静止状态[^1]。 - 对于**站立**,加速度的变化相对平稳,主要表现为重力方向上的恒定加速度[^2]。 - 对于**蹲下**,则会观察到身体重心下降过程中逐渐增加的负向加速度,直到达到最低点后再恢复稳定。 - 当一个人**坐下**时,臀部接触座椅会产生一个短暂但明显的冲击波形。 - 在**步**期间,周期性的高幅值加速度波动非常明显,反映了脚步触地产生的反复震动。 ```python import numpy as np def detect_fall(acceleration_data): threshold = 9.8 * 1.5 # 设置阈值为地球引力常数的一倍半以上作为判断依据 peak_indices = find_peaks(np.abs(acceleration_data), height=threshold)[0] if len(peak_indices) > 0 and all(abs(acceleration_data[i:]) < 0.1 for i in peak_indices[-1:]): return True, "Fall detected" else: return False, "No fall" def extract_features(data): mean_val = np.mean(data) std_deviation = np.std(data) max_peak = np.max(data) min_trough = np.min(data) features = { 'mean': mean_val, 'std': std_deviation, 'max': max_peak, 'min': min_trough } return features ``` #### 2. **机器学习模型的应用** 除了简单的规则匹配外,还可以利用监督学习构建更复杂的分类器来提高准确性。常用的技术包括支持向量机(SVM)、随机森林(Random Forests)或者深度神经网络(DNN)等。 这些模型需要先经过大量标注好的样本集训练才能投入使用。例如,可以从多个志愿者身上收集各种日常活动中所产生的传感数据,并将其划分为不同类别标签(如“fall”, “stand up” etc.) 进行建模处理。 --- ### 结论 综上所述,通过结合硬件设备获取实时动态信息并辅以软件层面高级数据分析手段即可完成上述五种基本姿态间的辨别工作。值得注意的是实际应用当中还需考虑诸多因素比如个体差异校准等问题以便获得更加精准可靠的结果。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值