tensorflow2.0 mnist手写数字识别 并验证几张图片以查看效果

目的:

tensorflow2.0+mnist已经算是ML界的“HELLO WORLD”了吧。网络上这方面的内容也比较多,可是有很多教程都是讲到训练完成就结束,如果只从数据上看准确率,对我们的主观感受不深。这里讲一下如何拿一张图片验证一下,以便直观感受。

环境:miniconda下tensorflow2.0

1、以下为训练:

import tensorflow as tf
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import image
import numpy as np

data = tf.keras.datasets.mnist
(x_train,y_train),(x_test,y_test) = data.load_data()
x_train,x_test = x_train/255.0,x_test/255.0
#print(x_train.shape)

#plt.imshow(y_train[0])
#print(x_train[0])
#y_test[0]
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Flatten(input_shape=(28,28)))
model.add(tf.keras.layers.Dense(128, activation="relu"))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dense(10))
loss_fn = loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(
    optimizer="adam",
    loss=loss_fn,
    metrics=['accuracy']
)
model.fit(x_train,y_train,epochs=5)

2、以下为验证:

 1、需要注意的是model.predict()输入参数应该是一个2维1列的矩阵。

2、这样做的好处是可以一次输入多个待验证数据,一并取得答案。

3、

而图片为28*28的矩阵,取其中一个:

                                                img1_ = x_test[INDEX]

将矩阵展开成1维数组:

                                                img1_ = img1_.flatten()

将1维数组展转换成2维1列的矩阵,-1代表由函数自动确认个数:

                                                img1  = img1_.reshape(1,-1)

#以下为训练,输入训练集的索引为3
INDEX = 3

img1_ = x_test[INDEX]
img1_ = img1_.flatten()
img1  = img1_.reshape(1,-1)
#print(img1)
ret = model.predict(img1)
#显示预测值,其实对应的是0-9共10个数分别的概率,最大的为预测值
print(ret)
#显示真正值
print(y_test[INDEX])

3、结果如下:

---------------------------------------------------------------分割线---------------------------------------------------------

那辛苦训练好的模型如何保存下来呢?:

                                                     model.save("./mnist_model/mnist01.h5")   

                                                     #保存在了路径:./mnist_model/mnist01.h5 里。

保存下来的模型如何加载呢?:

                             model = tf.keras.models.load_model("./mnist_model/mnist01.h5")

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值