POJ 1716 区间集合的差分约束

An integer interval [a,b], a < b, is a set of all consecutive integers beginning with a and ending with b. 
Write a program that: finds the minimal number of elements in a set containing at least two different integers from each interval.

Input

The first line of the input contains the number of intervals n, 1 <= n <= 10000. Each of the following n lines contains two integers a, b separated by a single space, 0 <= a < b <= 10000. They are the beginning and the end of an interval.

Output

Output the minimal number of elements in a set containing at least two different integers from each interval.

Sample Input

4
3 6
2 4
0 2
4 7

Sample Output

4

大意:有n个区间,这n个区间会给出,然后还有一个集合V,这个集合V是包含了这n个区间至少两个不一样的元素,问这个集合v最少有多少个元素在里面,就是说题目要求找出一个最小集合S,满足对于n个范围[ai,bi],S中存在两个及两个以上不同的点在范围内;

这里需要是一个数组dis[i]表示从当前给的区间中最小值,也就是左边界到i中至少被包含在V集合中的元素个数,因此可以到做到

dis[y+1]-dis[x]>=2这一个很好得出,但是还有一个隐含的关系式,那就是   0<=dis[i+1]-dis[i]<=1,这是比较难得出的一个约束关系,那剩下的就是将所有的这些点全部加入到边中,然后跑一下最短路就行

#include<iostream>
#include<cmath>
#include<cstring>
#include<queue>
#include<stack>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=10009;
const int INF=0x3f3f3f3f;
typedef long long ll;
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define ms(a,b) memset(a,b,sizeof a)
struct node
{
    int next,to,val;
}num[N<<4];
int head[N];
int dis[N];
int cot[N];
bool vis[N];
int n;
int tot;
void add(int u,int v,int w)
{
    num[tot].to=v;
    num[tot].val=w;
    num[tot].next=head[u];
    head[u]=tot++;
}
int minn,maxx;
void spfa(int s)
{
    ms(dis,-INF);
    ms(vis,0);
    //ms(cot,0);
    vis[s]=1;
    dis[s]=0;
    queue<int> q;
    q.push(s);
    while(q.size())
    {
        int now=q.front();
        q.pop();vis[now]=0;
//        if(cot[now]>=n)
//        {
//            cout<<-1<<endl;return;
//        }
        for(int i=head[now];i!=-1;i=num[i].next)
        {
            int v=num[i].to;
            int w=num[i].val;
            if(dis[v]<dis[now]+w)
            {
                dis[v]=dis[now]+w;
                if(!vis[v])
                {
                vis[v]=1;q.push(v);
                }
            }
        }
    }
    cout<<dis[maxx]<<endl;
}
int main()
{
    ios::sync_with_stdio(0);cin.tie(0);
    int ml,md;
    tot=1;
    minn=INF;maxx=-INF;
    ms(head,-1);
    cin>>n;
        int x,y,z;
    rep(i,1,n)//先由题目可知,先设dis[i]表示区间长度从0到i所含有在V集合中的元素个数,那么dis[y+1]-dis[x]>=2才能满足题意
    {
        cin>>x>>y;
        minn=min(minn,x);
        maxx=max(maxx,y+1);
        add(x,y+1,2);
    }
    rep(i,minn,maxx-1)//只有上面那一个约束条件还是不够的,还有一个隐含的必要条件是0<=dis[i+1]-dis[i]<=1;
    add(i,i+1,0),add(i+1,i,-1);
    spfa(minn);
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值