差分约束 解决区间选点问题

题意:

给定一个数轴上的 n 个区间,要求在数轴上选取最少的点使得第 i 个区间 [ai, bi] 里至少有 ci 个点。

input:

输入第一行一个整数 n 表示区间的个数,接下来的 n 行,每一行两个用空格隔开的整数 a,b 表示区间的左右端点。1 <= n <= 50000, 0 <= ai <= bi <= 50000 并且 1 <= ci <= bi - ai+1。

output:

输出一个整数表示最少选取的点的个数。

样例数据:
input:

5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1

output:

6

思路:

(小声说,如果是自己写题,肯定是无论如何也想不到这么高端的差分约束的做法。)用差分约束,主要就是思考如何构建差分约束的条件,即如何构建差分约束的图。将图构建完成后,利用spfa来根据题意,是跑最常路还是最短路,修改条件即可。
构建图:首先要构造不等式组。可以记sum[i](在此处用的dis),为数轴【0,i】之间需要选点的个数。
**对于第i个区间[ai,bi]之间需要满足,sum[bi]-sum[ai-1]>=ci,其中ci即为这个区间需要选点的个数,另外为了保证sum有意义,需要保证 0<=sum[i]-sum[i-1]<=1。**根据上述的条件即可构建图来。
如何构建图:
在这里插入图片描述
在这里插入图片描述
在此附上学长给的链接,跟着说明来构建图还是能理解的。

https://blog.csdn.net/kk303/article/details/6864199

即按照上述来选择起始点和终点以及边权,构建好图,在利用spfa即可得到所需要的解。注意跑最短路得到的是最大解,跑最长路得到的是最小的解。还要注意在这样构建时,由于左区间,即起始点有a-1的限制,故原先的起点0会多出来一个-1点,即增加一个点即可(如果这个点没有路,多出来的-1也并不影响,因为其到0的距离为0)。

代码:

#include <cstdio>
#include <algorithm> 
#include <iostream>
#include <string.h> 
#include <queue>
#include <cmath>
using namespace std;

int n;
int a, b,c;
int dis[50010];  //记录长度 

int vis[50010];  //是否在队列中
int cnt[50010];  //记录到达该点所经历的边数
 
struct Edge{
	int to, next, w;   //到哪点 下一条边 边的权值 
}e[200050];
int head[50010];
int tot;  //当前的边数

queue<int> q;


//     到哪点    去哪点     权值 
void add_edge(int t, int f, int w){
	e[tot].to=t;
	e[tot].next=head[f];
	head[f]=tot;
	e[tot].w=w;
	tot++;	
} 


queue <int> q2;
bool vis2[205]; 

void bfs(int x){
	while (q2.size()) q2.pop();
	
	memset(vis2,0,sizeof(vis2));
	dis[x]=-1;
	vis2[x] = 1;
	q2.push(x);
	while(q2.size()){
		int x = q2.front();
		q2.pop();
		
		int i = head[x];
		while (i != -1) {
			int t1 = e[i].to;
			if(vis2[t1]==0){
				q2.push(t1);
				vis2[t1]=1;
				dis[t1]=-1;
			}
			i = e[i].next;
		}
	}	
}



void spfa() {
	while (q.size()) q.pop();

	//初始化
	dis[0] = 0, vis[0]=1;
	q.push(0);
	while (q.size()) {
		int x = q.front();
		q.pop();
		vis[x] = 0;  //x出队列,标记值为0,在spfa中可以被队列弹出多次 
		
		int i = head[x];
		while (i != -1) {
			int t1 = e[i].to;
			int w1 = e[i].w;
			if (dis[t1] < dis[x] + w1) {
				dis[t1] = dis[x] + w1;  //记录路径长度 
				cnt[t1]=cnt[x]+1;
				if(cnt[t1]>=50000){
					bfs(t1);
				}else if(dis[t1]!=-1 && vis[t1]==0){
					q.push(t1);
					vis[t1]=1;
				}	
			}
			i = e[i].next;
		}
	}
}

int main(){
	scanf("%d",&n);
	tot=0;
	//初始化   0-50000  由于 a-1,故多出一个点 
	for(int i=0; i<=50001; i++){
		head[i]=-1;
		dis[i]=-10000;
		vis[i]=0;
		cnt[i]=0;		
	} 
	
	for(int i=0; i<50001; i++){ 
		add_edge(i+1,i,0);
		add_edge(i,i+1,-1);   	
	}
	
	for(int i=0; i<n; i++){
		scanf("%d%d%d",&a,&b,&c);
		add_edge(b+1,a,c);         //多了个-1点 ,故区间总体右移 
	} 
	spfa();
	cout<<dis[50001]<<endl; 
	
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值