Trustworthy LLMs: a Survey and Guideline for Evaluating Large Language Models‘ Alignment

828 篇文章

已下架不支持订阅

本文深入探讨大型语言模型(LLM)的可靠性、安全性、公平性等七个关键评估类别,旨在为LLM的对齐性和可信度提供指导。研究显示,高度对齐的模型通常表现更优,但仍需在特定领域细化对齐工作,以增强其在真实世界应用中的可靠性和道德性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是大模型领域相关文章,针对《Trustworthy LLMs: a Survey and Guideline for Evaluating Large Language Models’ Alignment》的翻译。

摘要

在将大型语言模型(LLM)部署到现实世界的应用程序中之前,确保一致性(即使模型的行为符合人类意图已成为一项关键任务。例如,OpenAI在GPT-4发布前花了六个月的时间对其进行迭代校准。然而,从业者面临的一个主要挑战是,在评估LLM输出是否符合社会规范、价值观和法规方面缺乏明确的指导。这种障碍阻碍了LLM的系统迭代和部署。为了解决这个问题,本文对评估LLM可信度时至关重要的关键维度进行了全面综述。该综述涵盖LLM可信度的七个主要类别:可靠性、安全性、公平性、抗滥用性、可解释性和推理性、遵守社会规范和稳健性。每个主要类别进一步划分为几个子类别,共有29个子类别。此外,还选择了8个子类别的子集进行进一步调查,设计并对几种广泛使用的LLM进行了相应的测量研究。测量结果表明,一般来说,更一致的模型往往在整体可信度方面表现更好。然而,在所考虑的不同可信度类别中,一致性的有效性各不相同。这突出了进行更细粒度的分析、测试和不断改进LLM对齐的重要性。通过阐明LLM可信度的这些关键维度,本文旨在为该领域的从业者提供有价值的见解和指导。理解和解决这些问题对于在各种应用中实现LLM的可靠和合乎道德的部署至关重要。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值