本文是大模型领域相关文章,针对《Trustworthy LLMs: a Survey and Guideline for Evaluating Large Language Models’ Alignment》的翻译。
值得信赖的LLMs:评估大型语言模型对齐性的综述和指南
摘要
在将大型语言模型(LLM)部署到现实世界的应用程序中之前,确保一致性(即使模型的行为符合人类意图已成为一项关键任务。例如,OpenAI在GPT-4发布前花了六个月的时间对其进行迭代校准。然而,从业者面临的一个主要挑战是,在评估LLM输出是否符合社会规范、价值观和法规方面缺乏明确的指导。这种障碍阻碍了LLM的系统迭代和部署。为了解决这个问题,本文对评估LLM可信度时至关重要的关键维度进行了全面综述。该综述涵盖LLM可信度的七个主要类别:可靠性、安全性、公平性、抗滥用性、可解释性和推理性、遵守社会规范和稳健性。每个主要类别进一步划分为几个子类别,共有29个子类别。此外,还选择了8个子类别的子集进行进一步调查,设计并对几种广泛使用的LLM进行了相应的测量研究。测量结果表明,一般来说,更一致的模型往往在整体可信度方面表现更好。然而,在所考虑的不同可信度类别中,一致性的有效性各不相同。这突出了进行更细粒度的分析、测试和不断改进LLM对齐的重要性。通过阐明LLM可信度的这些关键维度,本文旨在为该领域的从业者提供有价值的见解和指导。理解和解决这些问题对于在各种应用中实现LLM的可靠和合乎道德的部署至关重要。