Unleashing the Power of Graph Learning through LLM-based Autonomous Agents

828 篇文章

已下架不支持订阅

本文介绍了一种利用大型语言模型(LLM)作为自治代理来简化图学习任务的方法。Auto2Graph代理通过检测学习意图、配置AutoGraph解决方案和生成响应,自动化处理图数据的学习过程,无需大量先验知识和编码能力。实验表明,这种方法在不同数据集和任务上表现出可比的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Unleashing the Power of Graph Learning through LLM-based Autonomous Agents》的翻译。

通过基于LLM的自动Agent释放图学习的力量

摘要

图结构数据在现实世界中广泛存在和应用,而以有效的方式处理这些不同的数据和在图上学习任务是一个挑战。近年来,面对复杂的图学习任务,专家们设计了各种各样的图神经网络。他们还在Graph中实现了AutoML,也称为AutoGraph,以自动生成特定于数据的解决方案。尽管他们取得了成功,但他们在以下方面遇到了限制:(1)管理不同级别的不同学习任务,(2)处理架构设计之外的图学习中的不同过程,以及(3)使用AutoGraph时对先验知识的巨大要求。在本文中,我们建议使用大型语言模型(LLM)作为自治代理来简化不同真实世界图的学习过程。具体而言,响应于可能包含节点、边缘或图级别的不同数据和学习目标的用户请求,复杂的图学习任务根据代理规划分解为三个组件,即检测学习意图、基于AutoGraph配置解决方案和生成响应。AutoGraph代理管理自动化图形学习中的关键过程,包括数据处理、AutoML配置、搜索架构和超参数微调。使用这些代理,通过分解和逐步完成来处理这些组件,从而自动生成给定数据的解决方案,而不考虑节点或图上的学习任务。所提出

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值