Exploring the Potential of Large Language Models (LLMs) in Learning on Graphs

828 篇文章

已下架不支持订阅

本文探讨了大型语言模型(LLM)在图机器学习中的潜力,尤其是在节点分类任务中的应用。研究了LLM作为增强器和预测器的两种管道,通过实证研究揭示了LLM在图学习中的有效性和潜在问题,提出未来的研究方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Exploring the Potential of Large Language Models (LLMs) in Learning on Graphs》的翻译。

摘要

图学习由于其在现实世界中的广泛应用而引起了极大的关注。在具有文本节点属性的图上学习最流行的管道主要依赖于图神经网络(GNN),并利用浅文本嵌入作为初始节点表示,这在一般知识和深刻的语义理解方面具有局限性。近年来,大型语言模型(LLM)已被证明具有广泛的公共知识和强大的语义理解能力,这彻底改变了现有的处理文本数据的工作流程。在本文中,我们旨在探索LLM在图机器学习中的潜力,特别是在节点分类任务中,并研究两种可能的管道:LLM作为增强器和LLM作为预测器。前者利用LLM利用其海量知识增强节点的文本属性,然后通过GNN生成预测。后者试图直接使用LLM作为独立的预测因子。我们在不同的环境下对这两条管道进行了全面、系统的研究。从全面的实证结果中,我们进行了原始的观察,发现了新的见解,这些见解开辟了新的可能性,并提出了利用LLM在图上学习的有希望的方向。

1 引言

2 前言

3 LLM在图上的流水线

4 LLM作

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值