本文是LLM系列文章,针对《Automatic Engineering of Long Prompts》的翻译。
摘要
在以提示形式提供的全面说明和演示的指导下,大型语言模型(LLM)在解决复杂的开放领域任务方面表现出了非凡的能力。然而,这些提示可能很长,通常包括数百行和数千个token,并且它们的设计通常需要大量的人力。最近的研究探索了短提示的自动提示工程,通常由一句或几句组成。然而,由于其巨大的搜索空间,长提示的自动设计仍然是一个具有挑战性的问题。在本文中,我们研究了贪婪算法和遗传算法在自动长提示工程中的性能。我们证明了波束搜索的简单贪婪方法在搜索效率方面优于其他方法。此外,我们还介绍了两种新技术,它们利用搜索历史来提高我们搜索算法中基于LLM的变异的有效性。我们的结果表明,所提出的自动长提示工程算法在Big Bench Hard中的八项任务上平均实现了9.2%的准确率增益,突出了自动化提示设计对充分利用LLM能力的重要性。
1 引言
2 相关工作
3 提出的方法
4 实验设置
5 结论,局限性和未来工作
我们研究了长提示的自动提示工程问题,通常