Automatic Engineering of Long Prompts

828 篇文章

已下架不支持订阅

本文探讨了自动长提示工程在大型语言模型(LLM)中的有效性,特别是在解决复杂任务时。研究发现,贪婪算法和遗传算法在构建长提示中表现出色,尤其是在搜索效率方面。提出的新方法在Big Bench Hard的8项任务中平均提高了9.2%的准确率,强调了自动化提示设计的重要性。未来的研究方向包括改进LLM变异器的正确性、防止过拟合、多句子操作自动化以及减少评估成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Automatic Engineering of Long Prompts》的翻译。

摘要

在以提示形式提供的全面说明和演示的指导下,大型语言模型(LLM)在解决复杂的开放领域任务方面表现出了非凡的能力。然而,这些提示可能很长,通常包括数百行和数千个token,并且它们的设计通常需要大量的人力。最近的研究探索了短提示的自动提示工程,通常由一句或几句组成。然而,由于其巨大的搜索空间,长提示的自动设计仍然是一个具有挑战性的问题。在本文中,我们研究了贪婪算法和遗传算法在自动长提示工程中的性能。我们证明了波束搜索的简单贪婪方法在搜索效率方面优于其他方法。此外,我们还介绍了两种新技术,它们利用搜索历史来提高我们搜索算法中基于LLM的变异的有效性。我们的结果表明,所提出的自动长提示工程算法在Big Bench Hard中的八项任务上平均实现了9.2%的准确率增益,突出了自动化提示设计对充分利用LLM能力的重要性。

1 引言

2 相关工作

3 提出的方法

4 实验设置

5 结论,局限性和未来工作

我们研究了长提示的自动提示工程问题,通常

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值