When Large Language Model Agents Meet 6G Networks: Perception, Grounding, and Alignment

828 篇文章

已下架不支持订阅

本文探讨了大型语言模型(LLM)在6G网络中的应用,通过协同端云计算实现移动设备与边缘服务器的交互。提出了一种分离学习系统,其中LLM代理被划分为感知、基准和对齐模块,以满足6G网络的扩展功能需求。系统采用模型缓存算法优化网络成本,并讨论了未来研究中模型隐私保护的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《When Large Language Model Agents Meet 6G Networks: Perception, Grounding, and Alignment》的翻译。

摘要

基于多模态大语言模型(LLM)的人工智能代理有望彻底改变人机交互,并在医疗、教育、制造和娱乐等各个领域提供更个性化的辅助服务。在6G网络中部署LLM代理使用户能够通过移动设备民主地访问以前昂贵的人工智能助理服务,从而减少交互延迟,更好地保护用户隐私。然而,移动设备的有限容量限制了部署和执行本地LLM的有效性,这需要在长期交互期间将复杂任务卸载到运行在边缘服务器上的全局LLM。在本文中,我们提出了一种用于6G网络中LLM代理的分离学习系统,该系统利用移动设备和边缘服务器之间的协作,其中具有不同角色的多个LLM分布在移动设备和边界服务器之间,以协作执行用户-代理交互任务。在所提出的系统中,LLM代理被分为感知、基准和对齐模块,促进了模块间通信,以满足用户对6G网络功能的扩展需求,包括集成传感和通信、数字孪生和面向任务的通信。此外,我们在所提出的系统中为LLM引入了一种新的模型缓存算法,以提高上下文中的模型利用率,从而降低协作移动和边缘LLM代理的网络成本。

1 引言

2 6G网络中

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值