本文是LLM系列文章,针对《When Large Language Model Agents Meet 6G Networks: Perception, Grounding, and Alignment》的翻译。
当大型语言模型代理遇到6G网络时:感知、基础和对齐
摘要
基于多模态大语言模型(LLM)的人工智能代理有望彻底改变人机交互,并在医疗、教育、制造和娱乐等各个领域提供更个性化的辅助服务。在6G网络中部署LLM代理使用户能够通过移动设备民主地访问以前昂贵的人工智能助理服务,从而减少交互延迟,更好地保护用户隐私。然而,移动设备的有限容量限制了部署和执行本地LLM的有效性,这需要在长期交互期间将复杂任务卸载到运行在边缘服务器上的全局LLM。在本文中,我们提出了一种用于6G网络中LLM代理的分离学习系统,该系统利用移动设备和边缘服务器之间的协作,其中具有不同角色的多个LLM分布在移动设备和边界服务器之间,以协作执行用户-代理交互任务。在所提出的系统中,LLM代理被分为感知、基准和对齐模块,促进了模块间通信,以满足用户对6G网络功能的扩展需求,包括集成传感和通信、数字孪生和面向任务的通信。此外,我们在所提出的系统中为LLM引入了一种新的模型缓存算法,以提高上下文中的模型利用率,从而降低协作移动和边缘LLM代理的网络成本。