BESA: PRUNING LARGE LANGUAGE MODELS WITH BLOCKWISE PARAMETER-EFFICIENT SPARSITY ALLOCATION

828 篇文章

已下架不支持订阅

本文介绍了一种新的修剪技术BESA,用于解决大型语言模型(LLM)的计算效率问题。BESA通过分块重建损失减少修剪后的性能下降,实现对LLM如LLaMA1和LLaMA2的高效修剪,同时保持高性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《BESA: PRUNING LARGE LANGUAGE MODELS WITH BLOCKWISE PARAMETER-EFFICIENT SPARSITY ALLOCATION》的翻译。

BESA:用块参数高效稀疏性分配修剪大型语言模型

摘要

大型语言模型(LLM)在各种任务中表现出了出色的性能,如文本摘要、文本问答等。虽然它们的性能令人印象深刻,但由于其庞大的参数,其计算足迹可能令人望而却步。SparseGPT和Wanda等现有解决方案试图通过权重修剪来缓解这一问题。然而,他们的分层方法会对模型的输出产生显著的扰动,并需要细致的超参数调整,如修剪率,这可能会对整体模型性能产生不利影响。为了解决这一问题,本文引入了一种新的LLM修剪技术,称为分块参数高效稀疏分配(BESA),通过应用分块重建损失。与典型的逐层修剪技术相比,BESA具有两个独特的属性:i)它针对单个Transformer块的总体修剪误差,以及ii)它以可微分的方式分配特定于层的稀疏性,这两个属性都确保了修剪后性能下降的减少。我们的实验表明,BESA实现了最先进的性能,在短短五小时内就可以在单个A100 GPU上高效地修剪LLaMA1和LLaMA2等具有7B到70B参数的LLM。此处提供代码。<

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值