Jailbreaking Large Language Models in Few Queries via Disguise and Reconstruction

828 篇文章

已下架不支持订阅

本文揭示大型语言模型(LLM)微调过程中的安全偏差,导致易受有害响应攻击。研究人员提出DRA方法,通过伪装和重建技术,以高成功率(如在GPT-4上的90%)实现黑匣子越狱。此发现强调了LLM的安全问题,并为增强AI系统抗攻击能力的研究提供新视角。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Making Them Ask and Answer: Jailbreaking Large Language Models
in Few Queries via Disguise and Reconstruction》的翻译。

让他们问答:通过伪装和重建在少数查询中打破大型语言模型的牢笼

摘要

近年来,大型语言模型(LLM)在各种任务中都取得了显著的成功,但LLM的可信度仍然是一个悬而未决的问题。一个具体的威胁是可能产生有毒或有害的反应。攻击者可以制作对抗性提示,从而引起LLM的有害响应。在这项工作中,我们通过识别安全微调中的偏见漏洞,开创了LLM安全的理论基础,并设计了一种名为DRA(伪装和重建攻击)的黑匣子越狱方法,该方法通过伪装隐藏有害指令,并在完成时提示模型重建原始有害指令。我们评估了各种开源和开源模型的DRA,展示了最先进的越狱成功率和攻击效率。值得注意的是,DRA在LLM聊天机器人GPT-4上拥有90%的攻击成功率。

1 引言

2 背景和问题陈述

3 LLM微调中的安全偏差及其产生的脆弱性

4 方法

5 评估

6 讨论

<

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值