本文是LLM系列文章,针对《Unlocking the conversion of Web Screenshots into HTML Code with the WebSight Dataset》的翻译。
摘要
在web开发中使用视觉语言模型(VLM)提供了一种很有前途的策略,可以提高效率并解锁无代码解决方案:通过提供UI的屏幕截图或草图,VLM可以生成代码来复制它,例如用HTML等语言。尽管VLM在各种任务中取得了进步,但将屏幕截图转换为相应HTML的具体挑战却很少被探索。我们认为这主要是由于缺乏合适的、高质量的数据集。这项工作介绍了WebSight,这是一个由200万对HTML代码及其相应屏幕截图组成的合成数据集。我们在数据集上对基础VLM进行了微调,并熟练地将网页截图转换为功能HTML代码。为了加快这一领域的研究,我们开源了WebSight。
1 引言
2 相关工作
3 数据集的构造
4 在WebSight上微调基础视觉语言模型
5 定性评估
6 结论
在这项工作中,我们介绍了WebSight,一个由200万对HTML代码和相