On the Cross-lingual Consistency of Text Watermark for Large Language Models

828 篇文章

已下架不支持订阅

本文探讨了文本水印在翻译后保持有效性的跨语言一致性问题,发现现有技术在不同语言间存在不一致。提出了跨语言水印去除攻击(CWRA)并分析了影响一致性的关键因素,提出防御策略X-SIR,增强了水印的鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Can Watermarks Survive Translation? On the Cross-lingual Consistency of Text Watermark for Large Language Models》的翻译。

水印能在翻译中幸存吗?大型语言模型中文本水印的跨语言一致性研究

摘要

文本水印技术旨在标记和识别大型语言模型(LLM)产生的内容,以防止误用。在这项研究中,我们在文本水印中引入了“跨语言一致性”的概念,该概念评估文本水印在被翻译成其他语言后保持其有效性的能力。两种LLM和三种水印方法的初步实验结果表明,当前的文本水印技术在将文本翻译成各种语言时缺乏一致性。基于这一观察结果,我们提出了一种跨语言水印去除攻击(CWRA),通过首先从枢轴语言的LLM获得响应,然后将其翻译成目标语言来绕过水印。CWRA可以通过将曲线下面积(AUC)从0.95降低到0.67来有效地去除水印,而不会造成性能损失。此外,我们分析了影响文本水印跨语言一致性的两个关键因素,并提出了一种在CWRA下将AUC从0.67提高到0.88的防御方法。

1 引言

2 背景

3 文本水印的跨语言一致性

4 跨语言水印去除攻击

<

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值