Reinforcement Learning for Reasoning in Large Language Models with One Training Example

在这里插入图片描述

主要内容

  1. 研究背景:强化学习与可验证奖励(RLVR)在提升大语言模型(LLMs)推理能力方面取得显著进展,但RLVR数据方面的研究相对不足,如训练数据的数量、质量和有效性等问题有待探索。
  2. 研究方法
    • 采用GRPO作为强化学习算法,其损失函数包含策略梯度损失、KL散度损失和熵损失。
    • 提出基于历史方差分数的数据选择方法,通过训练模型获取每个示例的历史训练准确率列表,按其方差对数据进行排序。
  3. 实验设置
    • 模型:以Qwen2.5 - Math - 1.5B为主进行实验,并验证了Qwen2.5 - Math - 7B、Llama - 3.2 - 3B - Instruct和DeepSeek - R1 - Distill - Qwen - 1.5B等模型。
    • 数据集:从DeepScaleR - Preview - Dataset中随机选取1209个示例作为数据选择的实例池(DSR - sub),并使用MATH训练集进行对比。
    • 训练与评估:
### 强化学习激励大型语言模型推理能力的方法 为了提升大型语言模型在特定任务上的推理能力,采用了一种基于强化学习(RL)的训练方法[^2]。这种方法不仅增强了模型处理复杂问题的能力,还特别关注于提高其在编程、数学、科学以及逻辑推理等领域的表现。 #### 应用大规模强化学习训练过程 具体而言,在对预训练的基础模型进行初步调整之后,采用了类似于先前版本中的大规模强化学习流程来进行进一步优化。此阶段的核心目标在于加强模型对于需要清晰定义的问题及其对应解答路径的理解力和解决效率。值得注意的是,在这个过程中发现了一个有趣现象——当提示涉及到多语种环境下的思考链条时,容易出现不同语言混合使用的状况。为此,研究者们设计并实施了一套专门针对这一挑战的语言一致性奖励机制,旨在鼓励更连贯一致的回答形式,尽管这可能会带来些许性能上的牺牲[^1]。 #### 设计合理的奖励函数 为了平衡准确度与表达质量之间的关系,最终决定将推理任务的成功率同上述提到的语言一致性得分相结合作为整体评价标准的一部分。这意味着每当完成一次迭代更新后,都会依据这两个维度的表现给予相应的反馈信号给到正在接受训练的目标网络结构之中,直至整个系统能够在预期范围内稳定产出高质量的结果为止。 ```python def calculate_final_reward(task_accuracy, language_consistency): """ Calculate the final reward by combining task accuracy and language consistency. Args: task_accuracy (float): Accuracy score of reasoning tasks. language_consistency (float): Proportion of target language vocabulary used in Chain-of-Thought. Returns: float: Final combined reward value. """ return task_accuracy + language_consistency ``` 通过这种方式,可以有效地引导大型语言模型朝着更加擅长处理各类抽象概念的方向发展,同时也确保了输出内容能够保持较高的可理解性和易读性水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值