Direct Large Language Model Alignment Through Self-Rewarding Contrastive Prompt Distillation

828 篇文章

已下架不支持订阅

本文提出DLMA方法,无需人工注释数据,利用对比提示对生成偏好数据,通过自我奖励分数实现大语言模型的自动对齐,实验表明其优于RLHF方法且不影响文本生成质量。

本文是LLM系列文章,针对《Direct Large Language Model Alignment Through Self-Rewarding
Contrastive Prompt Distillation》的翻译。

通过自奖励对比提示提取直接对齐大型语言模型

摘要

在没有人工注释偏好数据的情况下,使大型语言模型与人类期望相一致是一个重要问题。在本文中,我们提出了一种通过使用对比提示对下的响应对的输出概率来评估响应偏好的方法,与RLAIF相比,该方法可以在LLaMA2-7B和LLaMA2-13B上获得更好的性能。基于此,我们提出了一种自动对齐方法,即直接大模型对齐(DLMA)。首先,我们使用对比提示对来自动生成偏好数据。然后,我们继续使用对比提示对来评估生成的偏好数据,并计算自我奖励分数。最后,我们使用DPO算法通过结合这种自我奖励分数来有效地对齐LLM。在实验阶段,我们的DLMA方法可以在不依赖于人类注释偏好数据的情况下超越RLHF方法。

1 引言

2 相关工作

3 前言

4 提出的方法

5 实验

6 结论

在这项工作中,我们提出了一种新的方法DLMA,它在不需要手动注释的情况下对齐LLM。通过利用对比提示对,我们能够通过LLM自主生成偏好数据。此外,我们还设计了一种机制,使用对比提示对和计算出的自我奖励分数来评估生成的偏好数据。然后,我们使用具有自我奖励分数

已下架不支持订阅

### 无人机多模态目标检测中的自适应特征对齐方法 在无人机(UAV)多模态目标检测任务中,基于可见光-红外(RGB-IR)图像的目标检测面临弱错位问题。为解决这一问题,OAFA 方法提出了一种创新的自适应特征对齐机制[^1]。具体而言,该方法通过以下两个关键模块实现: #### 1. 跨模态空间偏移建模 (CSOM) CSOM 模块旨在建立一个跨模态公共子空间,以估计特征级偏移。通过构建这样的子空间,可以有效捕捉不同模态之间的空间关系,并生成偏移向量,用于后续的特征对齐过程。这种方法避免了对严格对齐的需求,从而增强了模型在实际场景中的鲁棒性。 #### 2. 偏移引导的可变形对齐与融合 (ODAF) ODAF 模块进一步利用 CSOM 输出的偏移信息,进行自适应特征对齐和融合。通过引入可变形卷积操作,ODAF 能够动态调整特征图的空间位置,确保来自不同模态的特征能够在语义上更好地对齐。此外,该模块还实现了多模态特征的高效融合,从而提升了检测性能[^1]。 结合上述两个模块,OAFA 方法在无人机多模态目标检测任务中表现出显著的优势,尤其是在处理弱错位问题时,其性能超越了现有方法。 尽管深度学习在特征检测与匹配领域已经取得一定进展,但这些方法通常需要针对特定任务进行优化。例如,在图像配准中,虽然已有许多成熟的特征匹配算法,但它们可能无法直接应用于图像拼接流程,因为特征的准确性(如 SIFT 特征)和感受野存在差异[^2]。因此,在设计无人机多模态目标检测系统时,必须综合考虑特征提取、对齐以及后续处理流程的改进。 ### 示例代码:可变形卷积操作 以下是可变形卷积的一个简单实现示例,可用于特征对齐: ```python import torch import torch.nn as nn class DeformableConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False): super(DeformableConv2d, self).__init__() self.offset_conv = nn.Conv2d(in_channels, 2 * kernel_size * kernel_size, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias) self.deform_conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias) def forward(self, x): offset = self.offset_conv(x) output = self.deform_conv(x, offset) return output ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值