Towards Unified Task Embeddings Across Multiple Models: Bridging the Gap for Prompt-Based LLM

本文提出FUTE框架,协调不同模型(包括小模型和LLM)的任务嵌入,允许在单一空间中比较和分析模型间的相似性,扩展了任务嵌入在多模型场景的应用,适用于提示引导的大型语言模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Towards Unified Task Embeddings Across Multiple Models: Bridging the Gap for Prompt-Based Large Language Models and Beyond》的翻译。

跨多个模型实现统一的任务嵌入:弥合基于提示的大型语言模型及其后的差距

摘要

任务嵌入是一种捕捉特定任务信息的元学习技术,已经变得普遍,尤其是在多任务学习、模型编辑和可解释性等领域。然而,随着以无梯度方式操作的提示引导大型语言模型(LLM)的出现,它面临着挑战。现有的任务嵌入方法依赖于微调的、特定于任务的语言模型,这阻碍了任务嵌入在不同模型中的适应性,尤其是基于提示的LLM。为了在LLM时代释放任务嵌入的力量,我们提出了一个统一任务嵌入(FUTE)框架,在单个向量空间内协调来自各种模型的任务嵌入,包括较小的语言模型和具有不同提示的LLM。这种一致性使得能够比较和分析不同模型之间的相似性,扩展了现有任务嵌入方法在解决多模型场景中的范围和效用,同时保持其性能与特定于体系结构的方法相当。

1 引言

2 相关工作

3 方法

4 实验

5 结论和未来工作

本文介绍了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值