本文是LLM系列文章,针对《Towards Unified Task Embeddings Across Multiple Models: Bridging the Gap for Prompt-Based Large Language Models and Beyond》的翻译。
摘要
任务嵌入是一种捕捉特定任务信息的元学习技术,已经变得普遍,尤其是在多任务学习、模型编辑和可解释性等领域。然而,随着以无梯度方式操作的提示引导大型语言模型(LLM)的出现,它面临着挑战。现有的任务嵌入方法依赖于微调的、特定于任务的语言模型,这阻碍了任务嵌入在不同模型中的适应性,尤其是基于提示的LLM。为了在LLM时代释放任务嵌入的力量,我们提出了一个统一任务嵌入(FUTE)框架,在单个向量空间内协调来自各种模型的任务嵌入,包括较小的语言模型和具有不同提示的LLM。这种一致性使得能够比较和分析不同模型之间的相似性,扩展了现有任务嵌入方法在解决多模型场景中的范围和效用,同时保持其性能与特定于体系结构的方法相当。
1 引言
2 相关工作
3 方法
4 实验
5 结论和未来工作
本文介绍了