本文是LLM系列文章,针对《Causal Graph Discovery with Retrieval-Augmented Generation based Large Language Models》的翻译。
摘要
因果图恢复在因果推理领域是必不可少的。传统方法通常是基于知识或统计估计的,这受到数据收集偏差和个人对影响兴趣变量之间关系的因素的了解的限制。大型语言模型(LLM)的发展为解决这些问题提供了机会。我们提出了一种新的方法,该方法利用大量科学文献中包含的广泛知识来推导一般因果图恢复任务中的因果关系。这种方法利用基于检索增强生成(RAG)的LLM来系统地分析和提取综合研究论文集中的相关信息。我们的方法首先从聚合的文献中检索相关的文本块。然后,LLM的任务是识别和token因素之间的潜在关联。最后,我们给出了一种聚合关联关系以构建因果图的方法。我们证明了我们的方法能够在著名的SACHS数据集上仅从文献中构建高质量的因果图。
1 引言
2 背景
3 方法
4 实验
5 局限性
6 结论
在这项工作中,我们介绍了用于因果图恢复的LLM辅助因果恢复(LACR)方法。