A Data-efficient Continual Learning Paradigm for Fine-tuning Large Language Models with Instructions

本文提出了一种新的指令驱动的持续学习(InsCL)范式,用于微调大型语言模型(LLM)以适应不断变化的下游任务,同时避免灾难性遗忘。通过利用Wasserstein距离和指令信息度量(InsInfo),InsCL能够动态地回放高质量数据,提高LLM的表现。实验显示,相比于随机回放和无回放,InsCL在多个任务上表现出显著的性能提升。
摘要由CSDN通过智能技术生成

本文是LLM系列文章,针对《InsCL: A Data-efficient Continual Learning Paradigm for Fine-tuning
Large Language Models with Instructions》的翻译。

InsCL:一种数据高效的连续学习范式,用于用指令微调大型语言模型

摘要

指令调优有效地优化了用于下游任务的大型语言模型(LLM)。由于现实应用程序中不断变化的环境,LLM需要在不发生灾难性遗忘的情况下持续进行特定任务的适应。考虑到高昂的计算成本,基于重放的连续学习(CL)方法是LLM解决遗忘问题最简单、最广泛使用的方法。然而,传统的基于重放的方法没有完全利用指令来定制重放策略。在这项工作中,我们提出了一种新的范式,称为基于指令的持续学习(InsCL)。InsCL根据Wasserstein Distance与指令计算的任务相似性,动态回放先前的数据。此外,我们进一步引入了指令信息度量(InsInfo)来量化指令的复杂性和多样性。InsInfo表示,InsCL引导回放过程更倾向于高质量的数据。我们在16个不同训练顺序的任务上进行了广泛的实验,观察到InsCL的性能不断提高。当所有任务都经过训练后,与随机回放相比,InsCL实现了3.0的相对增益,与无回放相比,实现了27.96的相对增益。

1 引言

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值