本文是LLM系列文章,针对《Chain-of-Action: Faithful and Multimodal Question Answering through
Large Language Models》的翻译。
摘要
我们提出了一个用于多模态和检索增强问答(QA)的行动链(CoA)框架。与文献相比,CoA克服了当前QA应用的两个主要挑战:(i)与实时或领域事实不一致的不忠幻觉和(ii)对合成信息的弱推理性能。我们的主要贡献是一种新颖的推理检索机制,该机制通过系统提示和预先设计的动作将复杂问题分解为推理链。在方法上,我们提出了三种类型的适用于领域的“即插即用”操作,用于从异构源检索实时信息。我们还提出了一种多参考置信度评分(MRFS)来验证和解决答案中的冲突。从经验上讲,我们利用公共基准和Web3案例研究来证明CoA相对于其他方法的能力。
1 引言
2 方法
3 实验
4 相关工作
5 结论和未来工作
我们引入了行动链(CoA)框架,这是一种创新方法,旨在增强LLM处理复杂任务的