Chain-of-Action: Faithful and Multimodal Question Answering through Large Language Models

78 篇文章 1 订阅
31 篇文章 0 订阅

本文是LLM系列文章,针对《Chain-of-Action: Faithful and Multimodal Question Answering through
Large Language Models》的翻译。

行动链:通过大型语言模型进行忠实的多模态问答

摘要

我们提出了一个用于多模态和检索增强问答(QA)的行动链(CoA)框架。与文献相比,CoA克服了当前QA应用的两个主要挑战:(i)与实时或领域事实不一致的不忠幻觉和(ii)对合成信息的弱推理性能。我们的主要贡献是一种新颖的推理检索机制,该机制通过系统提示和预先设计的动作将复杂问题分解为推理链。在方法上,我们提出了三种类型的适用于领域的“即插即用”操作,用于从异构源检索实时信息。我们还提出了一种多参考置信度评分(MRFS)来验证和解决答案中的冲突。从经验上讲,我们利用公共基准和Web3案例研究来证明CoA相对于其他方法的能力。

1 引言

2 方法

3 实验

4 相关工作

5 结论和未来工作

我们引入了行动链(CoA)框架,这是一种创新方法,旨在增强LLM处理复杂任务的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值