本文是LLM系列文章,针对《MedSafetyBench: Evaluating and Improving the Medical Safety of Large Language Models》的翻译。
摘要
随着大型语言模型(LLM)发展出越来越复杂的功能并在医疗环境中找到应用,评估其医疗安全变得非常重要,因为它们对个人和公共健康、患者安全和人权具有深远的影响。然而,在LLM的背景下,人们对医疗安全的概念几乎没有了解,更不用说如何评估和改进它了。为了解决这一差距,我们首先根据美国医学协会提出的医学伦理原则定义LLM中的医疗安全概念。然后,我们利用这一理解引入MedSafetyBench,这是第一个专门用于测量LLM医疗安全性的基准数据集。我们通过使用MedSafetyBench来评估和提高LLM的医疗安全性,展示了它的实用性。我们的研究结果表明,公开的医疗LLM不符合医疗安全标准,使用MedSafetyBench对其进行微调可以提高其医疗安全性。通过引入这一新的基准数据集,我们的工作能够对LLM的医疗安全状况进行系统研究,并推动该领域未来的工作,从而降低LLM在医学中的安全风险。