本文是LLM系列文章,针对《Large Language Models for Next Point-of-Interest Recommendation》的翻译。
摘要
下一个兴趣点(POI)推荐任务是在给定用户的历史数据的情况下预测用户的下一次POI访问。基于位置的社交网络数据通常用于下一个POI推荐任务,但也面临挑战。一个经常被忽视的挑战是如何有效地使用基于位置的社交网络数据中存在的丰富上下文信息。以前的方法受到其数值性质的限制,未能解决这一挑战。在本文中,我们提出了一个使用预训练的大型语言模型来应对这一挑战的框架。我们的框架允许我们以原始格式保存异构的基于位置的社交网络数据,从而避免上下文信息的丢失。此外,由于包含了常识性知识,我们的框架能够理解上下文信息的内在含义。在实验中,我们在三个真实世界的基于位置的社交网络数据集上测试了我们的框架。我们的结果表明,所提出的框架在所有三个数据集中都优于最先进的模型。我们的分析证明了所提出的框架在使用上下文信息以及缓解常见的冷启动和短轨迹问题方面的有效性。我们的源代码位于:https://github.com/neolifer/LLM4POI。