Large Language Models for Next Point-of-Interest Recommendation

本文是LLM系列文章,针对《Large Language Models for Next Point-of-Interest Recommendation》的翻译。

用于下一个兴趣点推荐的大型语言模型

摘要

下一个兴趣点(POI)推荐任务是在给定用户的历史数据的情况下预测用户的下一次POI访问。基于位置的社交网络数据通常用于下一个POI推荐任务,但也面临挑战。一个经常被忽视的挑战是如何有效地使用基于位置的社交网络数据中存在的丰富上下文信息。以前的方法受到其数值性质的限制,未能解决这一挑战。在本文中,我们提出了一个使用预训练的大型语言模型来应对这一挑战的框架。我们的框架允许我们以原始格式保存异构的基于位置的社交网络数据,从而避免上下文信息的丢失。此外,由于包含了常识性知识,我们的框架能够理解上下文信息的内在含义。在实验中,我们在三个真实世界的基于位置的社交网络数据集上测试了我们的框架。我们的结果表明,所提出的框架在所有三个数据集中都优于最先进的模型。我们的分析证明了所提出的框架在使用上下文信息以及缓解常见的冷启动和短轨迹问题方面的有效性。我们的源代码位于:https://github.com/neolifer/LLM4POI

1 引言

2 相关工作

3 问题定义

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值