你有没有发现,现在的智能设备越来越 “聪明” 了?和智能音箱聊天,它能对答如流;用 AI 写文案、画图片,效果还相当不错。这些神奇体验的背后,都离不开 “大模型” 这个关键角色。大模型听起来高深莫测,其实没那么难懂,今天就带大家一探究竟。
一、大模型是什么?—— 超级知识 “大胃王”
大模型就像是计算机世界里的超级知识 “大胃王”。我们平常学习,是通过看书、听课、和人交流来积累知识,而大模型则是疯狂 “吞食” 海量的数据,包括网上的文章、新闻、小说,甚至是图像、语音等。它 “吃” 完这些数据后,经过特殊训练,就能学会像人类一样说话、写作、画画,还能进行推理和创造。想象一下,有个人把全世界的图书馆都 “背” 在了脑子里,不管你问什么,他都能给你答案,大模型就类似这样的存在。
二、大模型的基本原理与特点
大模型的核心原理是深度学习,这就好比教小朋友认识事物。小朋友看到 “苹果” 这个字,先得认识笔画、偏旁,再结合实际看到的苹果,理解它的含义。大模型也是如此,它通过神经网络,一层一层地处理数据,逐步理解数据背后的意义。
大模型有三个显著特点:
-
海量数据 “投喂”:它需要 “吃” 进几亿甚至几十亿条数据,就像把整个互联网上的知识都 “吞” 进肚子里,数据越多,它就越 “聪明”;
-
超多 “神经元开关”:模型内部的 “神经元连接” 数量多得吓人,比如 GPT-3 有 1750 亿个参数,这些参数就像无数个开关,控制着大模型的各种 “思考” 和 “反应”;
-
技能点满格:经过训练后,大模型能完成翻译、写代码、辅助医生诊断疾病等复杂任务,而且只要给它几个示例,它就能快速学会新技能,堪称 “学习达人”。
三、大模型训练三步骤
初步认识了大模型长什么样了,接下来一起来看看如何训练出一个大模型。
训练方式,这里主要参考OpenAI发表的关于InstructGPT的相关训练步骤,主流的大模型训练基本形式大多也是类似的:
1、预训练(Pretraining)
预训练是大模型训练的第一步,目的是让模型学习语言的统计模式和语义信息。主流的预训练阶段步骤基本都是近似的,其中最重要的就是数据,需要收集大量的无标注数据,例如互联网上的文本、新闻、博客、论坛等等。这些数据可以是多种语言的,并且需要经过一定的清洗和处理,以去除噪音,无关信息以及个人隐私相关的,最后会以tokenizer粒度输入到上文提到的语言模型中。这些数据经过清洗和处理后,用于训练和优化语言模型。预训练过程中,模型会学习词汇、句法和语义的规律,以及上下文之间的关系。OpenAI的ChatGPT4能有如此惊人的效果,主要的一个原因就是他们训练数据源比较优质。
2、 指令微调阶段(Instruction Tuning Stage)
在完成预训练后,就可以通过指令微调去挖掘和增强语言模型本身具备的能力,这步也是很多企业以及科研研究人员利用大模型的重要步骤。
Instruction tuning(指令微调)是大模型训练的一个阶段,它是一种有监督微调的特殊形式,旨在让模型理解和遵循人类指令。在指令微调阶段,首先需要准备一系列的NLP任务,并将每个任务转化为指令形式,其中指令包括人类对模型应该执行的任务描述和期望的输出结果。然后,使用这些指令对已经预训练好的大语言模型进行监督学习,使得模型通过学习和适应指令来提高其在特定任务上的表现。
为了让模型训练更加高效和简单,这个阶段还有一种高效的fine-tuning技术,这为普通的从业者打开了通向使用大模型的捷径。
Parameter-Efficient Fine-Tuning (PEFT)旨在通过最小化微调参数的数量和计算复杂度,达到高效的迁移学习的目的,提高预训练模型在新任务上的性能,从而缓解大型预训练模型的训练成本。在训练过程中,预训练模型的参数保持不变,只需微调少量的额外参数,就可以达到与全量微调相当的性能。
目前,很多研究对PEFT方法进行了探索,例如Adapter Tuning和Prefix Tuning等。其中,Adapter Tuning方法在面对特定的下游任务时,将预训练模型中的某些层固定,只微调接近下游任务的几层参数。而Prefix Tuning方法则是在预训练模型的基础上,添加一些额外的参数,这些参数在训练过程中会根据特定的任务进行更新和调整。
工业界现在常用的Adapter Tuning的技术是Low-Rank Adaptation(LoRA) 。它通过最小化微调参数的数量和计算复杂度,实现高效的迁移学习,以提高预训练模型在新任务上的性能。LoRA 的核心思想是将预训练模型的权重矩阵分解为两个低秩矩阵的乘积。通过这种分解,可以显著减少微调参数的数量,并降低计算复杂度。该方式和机器学习中经典的降维的思想很类似,类似地,LoRA 使用了矩阵分解技术中的奇异值分解 (Singular Value Decomposition, SVD) 或低秩近似 (Low-Rank Approximation) 方法,将原始权重矩阵分解为两个低秩矩阵的乘积。
在微调过程中,LoRA 只更新这两个低秩矩阵的参数,而保持其他预训练参数固定不变。这样可以显著减少微调所需的计算资源和时间,并且在很多任务上取得了与全量微调相当的性能。
LoRA技术的引入使得在大规模预训练模型上进行微调更加高效和可行,为实际应用提供了更多可能性。
3、对齐微调(Alignment Tuning)
主要目标在于将语言模型与人类的偏好、价值观进行对齐,其中最重要的技术就是使用RLHF(reinforcement learning from human feedback)来进行对齐微调。
Step 1.预训练模型的有监督微调
先收集一个提示词集合,并要求标注人员写出高质量的回复,然后使用该数据集以监督的方式微调预训练的基础模型。
Step 2.训练奖励模型
这个过程涉及到与人类评估者进行对话,并根据他们的反馈来进行调整和优化。评估者会根据个人偏好对模型生成的回复进行排序,从而指导模型生成更符合人类期望的回复。这种基于人类反馈的训练方式可以帮助模型捕捉到更多人类语言的特点和习惯,从而提升模型的生成能力。
Step 3.利用强化学习模型微调
主要使用了强化学习的邻近策略优化(PPO,proximal policy optimization )算法,对于每个时间步,PPO算法会计算当前产生和初始化的KL散度,根据这个分布来计算一个状态或动作的预期回报,然后使用这个回报来更新策略,达到对SFT模型进一步优化。
但是这种算法存在一些比较明显的缺点,比如PPO是on-policy算法,每一次更新都需要收集新的样本,这就会导致算法的效率低下,并且更新是在每次训练时进行的,因此策略更新比较频繁,这就会导致算法的稳定性较差。
所以当前有很多新的技术出来替代RLHF技术:
直接偏好优化(DPO)是一种对传统RLHF替代的技术,作者在论文中提出拟合一个反映人类偏好的奖励模型,将奖励函数和最优策略之间的映射联系起来,从而把约束奖励最大化问题转化为一个单阶段的策略训练问题。然后通过强化学习来微调大型无监督语言模型,以最大化这个预估的奖励。这个算法具有简单有效和计算轻量级的特点,不需要拟合奖励模型,只需要进行单阶段训练,也不需要大量的超参数调节,所以在响应质量方面也通常优于传统的RLHF。另外还有RLAIF从采样方式,生成训练奖励模型的评分的角度来替代原有的PPO的RLHF进行训练。
DPO方法
对齐微调是一个关键的阶段,这一阶段使用强化学习从人类反馈中进行微调,以进一步优化模型的生成能力。它通过与人类评估者和用户的互动,不断优化模型的生成能力,以更好地满足人类期望和需求。
四、Prompt 是什么?—— 和大模型沟通的 “神奇密码”
Prompt 就是你和大模型沟通的 “神奇密码”,也就是你给大模型的指令或问题。比如你输入 “写一个搞笑的小故事”,大模型就会 “绞尽脑汁” 输出一个故事。但这个 “密码” 的设置有技巧,就像你拜托别人帮忙做事,话说得越清楚、越具体,别人就越容易满足你的要求。比如把指令改成 “写一个以猫咪为主角,发生在超市里的搞笑小故事,要包含三个反转情节”,大模型就能给出更贴合你需求的内容。
根据使用场景不同,Prompt 可以分为:
-
问答型:直接问问题,像 “为什么星星会闪烁?”;
-
创作型:让大模型生成文章、故事、诗歌、代码等;
-
任务型:要求大模型完成翻译、总结文章、提取关键信息等任务;
-
推理型:让大模型分析逻辑关系,预测事情的发展结果。
五、大模型的应用场景
大模型如今已经 “潜入” 了我们生活的各个角落:
-
办公小能手:帮你自动生成 PPT 大纲,润色邮件内容,还能快速整理会议纪要,让办公效率直线上升;
-
教育好帮手:为学生提供个性化辅导,模拟各种实验场景,解答学习中的难题,就像随时陪伴在身边的家教;
-
医疗小助手:辅助医生诊断疾病,分析医学文献,甚至参与药物设计,为医疗事业提供强大支持;
-
创意大师:生成吸睛的广告文案,绘制精美的插画,创作动听的音乐,给创意行业带来无限灵感;
-
贴心客服:7×24 小时在线解答用户问题,不知疲倦,大大降低企业的人力成本。
六、大模型面临的挑战
虽然大模型本领高强,但也不是 “十全十美”:
-
“胡说八道” 风险:有时候它会输出错误信息,一本正经地 “瞎编”,让人真假难辨;
-
隐私 “小漏洞”:在处理敏感数据时,可能存在信息泄露的风险,就像家里的门没锁好,容易被坏人溜进去;
-
伦理 “大难题”:它可能会生成虚假新闻、带有偏见的内容,甚至被不法分子利用进行诈骗,引发一系列伦理争议;
-
能耗 “大怪兽”:训练一个大模型消耗的电力惊人,相当于一个小镇一年的用电量,对环境不太友好,是个 “耗电大户”。
结语
大模型就像一把威力巨大的双刃剑,既能为我们的生活和工作带来诸多便利,创造无限可能,也伴随着一些不容忽视的问题。随着技术的不断进步,相信未来我们能开发出更聪明、更安全、更环保的 AI。如果你对大模型感兴趣,不妨从学习设计优质的 Prompt 开始,亲自体验和这个超级大脑 “对话” 的奇妙乐趣!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。