EXPLORING THE POTENTIAL OF LARGE LANGUAGE MODELS IN GRAPH GENERATION

本文是LLM系列文章,针对《EXPLORING THE POTENTIAL OF LARGE LANGUAGE MODELS IN GRAPH GENERATION》的翻译。

探讨大型语言模型在图生成中的潜力

摘要

大型语言模型(LLM)在许多领域都取得了巨大的成功,最近的工作研究了将LLM用于图判别任务(如节点分类)。然而,LLM生成图的能力在文献中仍未得到探索。图生成需要LLM生成具有给定属性的图,这在现实世界中具有宝贵的应用,如药物发现,但往往更具挑战性。在本文中,我们提出了LLM4GraphGen,通过系统的任务设计和广泛的实验来探索LLM生成图的能力。具体而言,我们提出了几个通过综合实验定制的任务,以解决LLM对不同图结构规则的理解、它们捕获结构类型分布的能力以及它们对基于属性的图生成的领域知识的利用等关键问题。我们的评估表明,LLM,特别是GPT-4,在图形生成任务中表现出初步的能力,包括基于规则和基于分布的生成。我们还观察到,流行的提示方法,如小样本和思维链提示,并不能始终如一地提高性能。此外,LLM在生成具有特定性质的分子方面显示出潜力。这些发现可能为设计良好的基于LLM的图生成模型奠定基础,并提供有价值的见解和进一步的研究。

1 引言

2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值