Can LLMs Master Math? Investigating Large Language Models on Math Stack Exchange

本文是LLM系列文章,针对《Can LLMs Master Math? Investigating Large Language Models on
Math Stack Exchange》的翻译。

LLM能掌握数学吗?研究数学堆栈交换中的大型语言模型

摘要

大型语言模型(LLM)在各种自然语言任务中表现出了非凡的能力,其性能往往超过人类。尽管取得了这些进步,但数学领域仍面临着独特的挑战,主要是由于其专业结构和所需的精度。在这项研究中,我们采用了两步法来调查LLM在回答数学问题方面的熟练程度。首先,我们使用最有效的LLM,根据它们在数学问答基准测试中的表现来确定,从数学堆栈交换(MSE)中生成78个问题的答案。其次,对表现出最高性能的LLM进行案例分析,通过手动评估,重点关注其答案的质量和准确性。我们发现,在为回答数学问题而微调的现有LLM中,GPT-4表现最好(nDCG为0.48,P@10为0.37),并在考虑P@10的情况下,优于ArqMATH3 Task1上的当前最佳方法。我们的案例分析表明,虽然GPT-4在某些情况下可以产生相关响应,但它并不能始终如一地准确回答所有问题。本文探讨了LLM目前在解决复杂数学问题方面的局限性。通过案例分析,我们揭示了数学中LLM能力的差距,从而为未来人工智能驱动的数学推理的研究和进步奠定了基础。我们

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值