本文是LLM系列文章,针对《Automated Federated Pipeline for Parameter-Efficient Fine-Tuning of Large Language Models》的翻译。
摘要
近年来,高级智能生成内容(AIGC),特别是大型语言模型(LLMs)的发展激增。然而,对于许多下游任务,有必要使用私有数据对LLM进行微调。虽然联邦学习为LLM微调提供了一种有前景的隐私保护解决方案,但LLM的庞大规模,再加上高计算和通信需求,使得它很难应用于下游任务。更重要的是,在现实世界中,私有边缘服务器通常拥有不同的计算和网络资源,这给LLM微调带来了额外的复杂性。为了解决这些问题,我们设计并实现了一个名为FedPipe的自动化联邦管道,以最小的训练成本微调LLM,但不会增加任何推理延迟。FedPipe首先根据其对LLM培训的贡献确定需要微调的权重。然后,它为每个选定的权重配置一个低级适配器,以在边缘服务器上训练本地低级适配器,并聚合所有边缘服务器的本地适配器,以微调整个LLM。最后,根据边缘服务器的要求,对LLM的参数进行适当的量化,以减少内存空间。大量实验表明,FedPipe加快了模型训练,并实现了比最先进的基准更高的精度。