Benchmarking Benchmark Leakage in Large Language Models

本文是LLM系列文章,针对《Benchmarking Benchmark Leakage in Large Language Models》的翻译。

摘要

随着预训练数据的广泛使用,基准数据集泄漏现象日益突出,不透明的训练过程和当代大型语言模型(LLM)中经常未公开的监督数据的包含加剧了这一现象。这个问题扭曲了基准的有效性,并助长了潜在的不公平比较,阻碍了该领域的健康发展。为了解决这个问题,我们引入了一种检测管道,利用困惑度和N-gram准确性——这两个简单且可扩展的指标来衡量模型在基准上的预测精度——来识别潜在的数据泄漏。通过在数学推理的背景下分析31个LLM,我们揭示了大量训练甚至测试集误用的情况,导致了潜在的不公平比较。这些发现促使我们就模型文档、基准设置和未来评估提出了几点建议。值得注意的是,我们提出了“基准透明度卡”(表19),以鼓励明确记录基准利用情况,促进LLM的透明度和健康发展。我们已经公开了我们的排行榜、管道实施和模型预测,以促进未来的研究。

1 引言

2 前言

3 检测方法

4 元实验:检测管道的可靠性

5 野外评估

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值