本文是LLM系列文章,针对《Benchmarking Benchmark Leakage in Large Language Models》的翻译。
大型语言模型中的基准泄漏
摘要
随着预训练数据的广泛使用,基准数据集泄漏现象日益突出,不透明的训练过程和当代大型语言模型(LLM)中经常未公开的监督数据的包含加剧了这一现象。这个问题扭曲了基准的有效性,并助长了潜在的不公平比较,阻碍了该领域的健康发展。为了解决这个问题,我们引入了一种检测管道,利用困惑度和N-gram准确性——这两个简单且可扩展的指标来衡量模型在基准上的预测精度——来识别潜在的数据泄漏。通过在数学推理的背景下分析31个LLM,我们揭示了大量训练甚至测试集误用的情况,导致了潜在的不公平比较。这些发现促使我们就模型文档、基准设置和未来评估提出了几点建议。值得注意的是,我们提出了“基准透明度卡”(表19),以鼓励明确记录基准利用情况,促进LLM的透明度和健康发展。我们已经公开了我们的排行榜、管道实施和模型预测,以促进未来的研究。