Chain of Thought Empowers Transformers to Solve Inherently Serial Problems

本文是LLM系列文章,针对《Chain of Thought Empowers Transformers to Solve Inherently
Serial Problems》的翻译。

摘要

指示模型生成一系列中间步骤,即思维链(CoT),是提高大型语言模型(LLM)在算术和符号推理任务中的准确性的一种非常有效的方法。然而,CoT背后的机制尚不清楚。这项工作通过表现力的视角,为CoT对仅解码器Transformer的强大功能提供了理论上的理解。从概念上讲,CoT使模型能够执行固有的串行计算,这是Transformer所缺乏的,尤其是在深度较低的情况下。在给定输入长度n的情况下,之前的研究表明,具有有限精度poly(n)嵌入大小的恒定深度Transformer只能解决没有CoT的 T C 0 TC^{0}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值