Meta In-Context Learning Makes Large Language Models Better Zero and Few-Shot Relation Extractors

本文是LLM系列文章,针对《Meta In-Context Learning Makes Large Language Models Better Zero and Few-Shot Relation Extractors》的翻译。

元上下文学习使大型语言模型更好地提取零样本和小样本关系

摘要

关系提取(RE)是一项重要任务,旨在识别文本中实体之间的关系。虽然大型语言模型(LLMs)在一般零样本和小样本学习方面显示出显著的上下文学习(ICL)能力,但最近的研究表明,目前的LLMs仍然在零样本和小样本RE方面苦苦挣扎。之前的研究主要致力于设计提示格式和选择好的例子来改进基于ICL的RE。虽然这两个因素对ICL都很重要,但如果能够从根本上提高LLMs在RE中的ICL能力,通过ICL的零样本和小样本RE性能将得到显著提高。为此,我们引入了MICRE(用于关系提取的LLM元上下文学习),这是一种用于零和小样本RE的新元训练框架,其中LLM被调整为在各种RE数据集上进行ICL(即学习在RE的上下文中学习)。通过元训练,该模型通过在推理时对几个没有参数更新或任务特定模板的训练示例进行条件化,在上下文中更有效地学习新的RE任务,从而实现了更好的零和小样本任务泛化。我们在不同模型大小和12个公共RE数据集的各种LLM上进行了MICRE实验,然后在零和小样本设置下在看不见的RE基准上对其进行了评估。与一系列基线(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值