Towards Responsible and Reliable Traffic Flow Prediction with Large Language Models

本文是LLM系列文章,针对《Towards Responsible and Reliable Traffic Flow Prediction with Large Language Models》的翻译。

利用大型语言模型进行负责任和可靠的交通流预测

摘要

交通预测对智能交通系统至关重要。得益于深度学习在捕获交通数据潜在模式方面的强大功能,它取得了重大进展。然而,最近的深度学习架构需要复杂的模型设计,并且缺乏对从输入数据到预测结果的映射的直观理解。由于交通数据的复杂性和深度学习模型固有的不透明性,在交通预测模型中实现准确性和责任性仍然是一个挑战。为了应对这些挑战,我们提出了一种具有大型语言模型的负责任和可靠的交通流量预测模型(R2TLLM),该模型利用大型语言模型(LLM)生成负责任的交通预测。通过将多模态交通数据转换为自然语言描述,R2T-LLM从综合交通数据中捕捉复杂的时空模式和外部因素。LLM框架使用基于语言的指令进行微调,以与时空交通流数据保持一致。根据经验,R2T-LLM与深度学习基线相比具有竞争力的准确性,同时为预测提供了直观可靠的解释。我们讨论了条件未来流量预测的时空和输入依赖性,展示了R2T-LLM在各种城市预测任务中的潜力。本文有助于推进负责任的交通预测模型,并为未来探索LLM在交通领域的应用奠定了基础。据我们所知,这是第一项使用LLM对交通流量进行负责任和可靠预测的研究。

1 引言

Adversarial attacks are a major concern in the field of deep learning as they can cause misclassification and undermine the reliability of deep learning models. In recent years, researchers have proposed several techniques to improve the robustness of deep learning models against adversarial attacks. Here are some of the approaches: 1. Adversarial training: This involves generating adversarial examples during training and using them to augment the training data. This helps the model learn to be more robust to adversarial attacks. 2. Defensive distillation: This is a technique that involves training a second model to mimic the behavior of the original model. The second model is then used to make predictions, making it more difficult for an adversary to generate adversarial examples that can fool the model. 3. Feature squeezing: This involves converting the input data to a lower dimensionality, making it more difficult for an adversary to generate adversarial examples. 4. Gradient masking: This involves adding noise to the gradients during training to prevent an adversary from estimating the gradients accurately and generating adversarial examples. 5. Adversarial detection: This involves training a separate model to detect adversarial examples and reject them before they can be used to fool the main model. 6. Model compression: This involves reducing the complexity of the model, making it more difficult for an adversary to generate adversarial examples. In conclusion, improving the robustness of deep learning models against adversarial attacks is an active area of research. Researchers are continually developing new techniques and approaches to make deep learning models more resistant to adversarial attacks.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值