JORA: JAX Tensor-Parallel LoRA Library for Retrieval Augmented Fine-Tuning

本文是LLM系列文章,针对《JORA: JAX Tensor-Parallel LoRA Library for Retrieval Augmented
Fine

JORA:用于检索增强微调的JAX Tensor并行LoRA库

摘要

用于基于检索的任务的大型语言模型(LLM)的扩展,特别是在检索增强生成(RAG)中,面临着巨大的内存限制,尤其是在微调大量提示序列时。当前的开源库支持跨多个GPU的全模型推理和微调,但无法适应检索上下文所需的高效参数分布。为了弥补这一差距,我们引入了一种新的框架,利用分布式训练对Llama-2模型进行PEFT兼容的微调。我们的框架独特地利用了JAX的实时(JIT)编译和张量分片来实现高效的资源管理,从而加速了微调,降低了内存需求。这一进步显著提高了为复杂RAG应用程序微调LLM的可扩展性和可行性,即使在GPU资源有限的系统上也是如此。我们的实验表明,与使用四个GPU的Hugging Face/DeepSpeed实现相比,运行时间提高了12倍以上,而每个GPU消耗的VRAM不到一半。

1 引言

2 背景

3 JORA框架

4 实验

5 使用场景示例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值