Position Engineering: Boosting Large Language Models through Positional Information Manipulation

本文是LLM系列文章,针对《Position Engineering: Boosting Large Language Models through Positional Information Manipulation》的翻译。

位置工程:通过位置信息操纵增强大型语言模型

摘要

大型语言模型(LLM)的性能受到所提供提示质量的显著影响。作为回应,研究人员开发了大量的提示工程策略,旨在修改提示文本以提高任务性能。本文介绍了一种称为位置工程的新技术,它为指导大型语言模型提供了一种更有效的方法。与提示工程不同,提示工程需要付出大量努力来修改提供给LLM的文本,而位置工程只涉及更改提示中的位置信息,而不修改文本本身。我们在两种广泛使用的LLM场景中评估了位置工程:检索增强生成(RAG)和上下文学习(ICL)。我们的研究结果表明,在这两种情况下,位置工程都大大改善了基线。因此,位置工程代表了一种开发大型语言模型功能的有前景的新策略。

1 引言

2 方法

3 实验

4 讨论

5 相关工作

6 结论

在这项研究中,我们引入了位置工程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值