LITE: Modeling Environmental Ecosystems with Multimodal Large Language Models

本文是LLM系列文章,针对《LITE: Modeling Environmental Ecosystems with Multimodal Large Language Models》的翻译。

摘要

环境生态系统的建模在我们星球的可持续管理中起着关键作用。对关键环境变量在空间和时间上的准确预测有助于制定明智的政策和决策,从而改善民生。最近,基于深度学习的方法在预测环境变量的时空关系建模方面显示出了希望。然而,由于数据收集的高昂成本和测量仪器的故障,这些方法在处理环境数据中常见的不完整特征和分布变化方面往往不足。为了解决这些问题,我们提出了LITE——一种用于环境生态系统建模的多模态大型语言模型。具体来说,LITE通过将不同的环境变量转换为自然语言描述和折线图图像来统一它们。然后,LITE利用统一编码器来捕获不同模态中的时空动态和相关性。在此步骤中,不完整的特征由稀疏混合专家框架估算,分布变化通过结合过去观测的多粒度信息来处理。最后,在领域指令的指导下,采用语言模型来融合预测的多模态表示。我们的实验表明,与最佳基线相比,LITE显著提高了不同领域的环境时空预测性能,预测误差降低了41.25%。这证明了其有效性。我们的数据和代码在https://github.com/hrlics/LITE可用。

1 引言

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值