本文是LLM系列文章,针对《Claim Verification in the Age of Large Language Models: A Survey》的翻译。
摘要
互联网上可用的大量且不断增加的数据,加上手动索赔和事实验证的繁重任务,激发了人们对开发自动索赔验证系统的兴趣。1 已经提出了几种深度学习和基于变压器的模型多年来这个任务。随着大型语言模型 (LLM) 的引入及其在多个 NLP 任务中的卓越性能,我们看到基于 LLM 的声明验证方法激增,以及检索增强生成 (RAG) 等新颖方法的使用。在本次调查中,我们全面介绍了最近使用法学硕士的索赔验证框架。我们详细描述了这些框架中使用的声明验证管道的不同组件,包括常见的检索、提示和微调方法。最后,我们描述了为此任务创建的公开英语数据集。
引言
搜索标准
声明验证流水线
LLM方法
评估和基准
开放挑战
结论
我们提出了一项关于LLM声明验证方法的调查。据我们所知,这是第一个专门针对LLM方法的声明验证调查,从而填补了文献中的一个重要空白。我们描述了典型声明验证流程的每个子任务,并讨论了该