Claim Verification in the Age of Large Language Models: A Survey

本文是LLM系列文章,针对《Claim Verification in the Age of Large Language Models: A Survey》的翻译。

摘要

互联网上可用的大量且不断增加的数据,加上手动索赔和事实验证的繁重任务,激发了人们对开发自动索赔验证系统的兴趣。1 已经提出了几种深度学习和基于变压器的模型多年来这个任务。随着大型语言模型 (LLM) 的引入及其在多个 NLP 任务中的卓越性能,我们看到基于 LLM 的声明验证方法激​​增,以及检索增强生成 (RAG) 等新颖方法的使用。在本次调查中,我们全面介绍了最近使用法学硕士的索赔验证框架。我们详细描述了这些框架中使用的声明验证管道的不同组件,包括常见的检索、提示和微调方法。最后,我们描述了为此任务创建的公开英语数据集。

引言

搜索标准

声明验证流水线

LLM方法

评估和基准

开放挑战

结论

我们提出了一项关于LLM声明验证方法的调查。据我们所知,这是第一个专门针对LLM方法的声明验证调查,从而填补了文献中的一个重要空白。我们描述了典型声明验证流程的每个子任务,并讨论了该

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值