Evaluating the Efficacy of Large Language Models in Detecting Fake News: A Comparative Analysis

本文是LLM系列文章,针对《Evaluating the Efficacy of Large Language Models in Detecting Fake News: A Comparative Analysis》的翻译。

评估大型语言模型在检测假新闻方面的功效:比较分析

摘要

评估大型语言模型在检测假新闻方面的功效:比较分析在人工智能影响越来越大的时代,假新闻的检测至关重要,尤其是在选举季节等错误信息可能产生重大社会影响的情况下。这项研究评估了各种LLM在识别和过滤假新闻内容方面的有效性。利用比较分析方法,我们测试了四个大LLM(GPT-4、Claude 3 Sonnet、Gemini Pro 1.0 和 Mistral Large)以及两个较小的LLM(Gemma 7B 和 Mistral 7B)。通过使用 Kaggle 的假新闻数据集样本,这项研究不仅揭示了LLM当前在假新闻检测方面的能力和局限性,还讨论了对开发人员和政策制定者增强人工智能驱动的信息完整性的影响。

1 引言

2 问题定义和算法

3 实验评估

4 相关工作

5 未来工作

6 结论

这项研究对各种大型语言模型(LLM)在检测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值