Federated Learning and RAG Integration: A Scalable Approach for Medical Large Language Models

本文是LLM系列文章,针对《Federated Learning and RAG Integration: A Scalable Approach for Medical Large Language Models》的翻译。

联邦学习和RAG集成:一种可扩展的医疗大型语言模型方法

摘要

本研究通过在联邦学习(FL)框架内集成检索增强生成(RAG)系统,分析了特定领域大型语言模型(LLM)在医学领域的性能。利用FL的固有优势,如保护数据隐私和实现分布式计算,本研究探索了RAG系统与在不同客户端配置下训练的模型的集成,以优化性能。实验结果表明,与RAG系统集成的基于FL的模型在所有评估指标上始终优于非集成模型。本研究强调了结合FL和RAG系统在医学领域开发特定领域LLM的潜力,为增强文本生成能力提供了一种可扩展和隐私保护的解决方案。

1 引言

2 相关工作

3 RAG系统集成:方法与工作流程

4 实验设置

5 实验结果

6 结论

本研究对将FL与RAG系统集成以开发医学领域特定领域LLM的潜力进行了实证分析。所提出的框架展示了其在保持数据隐私的同时提供稳健和可扩展性能的能力,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值